import os from pathlib import Path import shutil import numpy as np import tqdm from PIL import Image import multiprocessing as mp import functools from detail import Detail # fmt: off _mapping = np.sort( np.array([ 0, 2, 259, 260, 415, 324, 9, 258, 144, 18, 19, 22, 23, 397, 25, 284, 158, 159, 416, 33, 162, 420, 454, 295, 296, 427, 44, 45, 46, 308, 59, 440, 445, 31, 232, 65, 354, 424, 68, 326, 72, 458, 34, 207, 80, 355, 85, 347, 220, 349, 360, 98, 187, 104, 105, 366, 189, 368, 113, 115 ])) # fmt: on _key = np.array(range(len(_mapping))).astype("uint8") def generate_labels(img_info, detail_api, out_dir): def _class_to_index(mask, _mapping, _key): # assert the values values = np.unique(mask) for i in range(len(values)): assert values[i] in _mapping index = np.digitize(mask.ravel(), _mapping, right=True) return _key[index].reshape(mask.shape) sem_seg = _class_to_index(detail_api.getMask(img_info), _mapping=_mapping, _key=_key) sem_seg = sem_seg - 1 # 0 (ignore) becomes 255. others are shifted by 1 filename = img_info["file_name"] Image.fromarray(sem_seg).save(out_dir / filename.replace("jpg", "png")) def copy_images(img_info, img_dir, out_dir): filename = img_info["file_name"] shutil.copy2(img_dir / filename, out_dir / filename) if __name__ == "__main__": dataset_dir = Path(os.getenv("DETECTRON2_DATASETS", "datasets")) / "pascal_ctx_d2" voc_dir = Path(os.getenv("DETECTRON2_DATASETS", "datasets")) / "VOCdevkit/VOC2010" for split in ["training", "validation"]: img_dir = voc_dir / "JPEGImages" if split == "training": detail_api = Detail(voc_dir / "trainval_merged.json", img_dir, "train") else: detail_api = Detail(voc_dir / "trainval_merged.json", img_dir, "val") img_infos = detail_api.getImgs() output_img_dir = dataset_dir / "images" / split output_ann_dir = dataset_dir / "annotations_ctx59" / split output_img_dir.mkdir(parents=True, exist_ok=True) output_ann_dir.mkdir(parents=True, exist_ok=True) pool = mp.Pool(processes=max(mp.cpu_count() // 2, 4)) pool.map( functools.partial(copy_images, img_dir=img_dir, out_dir=output_img_dir), tqdm.tqdm(img_infos, desc=f"Writing {split} images to {output_img_dir} ..."), chunksize=100, ) pool.map( functools.partial(generate_labels, detail_api=detail_api, out_dir=output_ann_dir), tqdm.tqdm(img_infos, desc=f"Writing {split} images to {output_ann_dir} ..."), chunksize=100, )