#!/usr/bin/env python3 # -*- coding: utf-8 -*- import glob import json import os from collections import Counter import numpy as np import tqdm from panopticapi.utils import IdGenerator, save_json from PIL import Image import pycocotools.mask as mask_util if __name__ == "__main__": dataset_dir = os.getenv("DETECTRON2_DATASETS", "datasets") for name, dirname in [("train", "training"), ("val", "validation")]: image_dir = os.path.join(dataset_dir, f"ADEChallengeData2016/images/{dirname}/") instance_dir = os.path.join( dataset_dir, f"ADEChallengeData2016/annotations_instance/{dirname}/" ) # img_id = 0 ann_id = 1 # json out_file = os.path.join(dataset_dir, f"ADEChallengeData2016/ade20k_instance_{name}.json") # json config instance_config_file = "datasets/ade20k_instance_imgCatIds.json" with open(instance_config_file) as f: category_dict = json.load(f)["categories"] # load catid mapping # it is important to share category id for both instance and panoptic annotations mapping_file = "datasets/ade20k_instance_catid_mapping.txt" with open(mapping_file) as f: map_id = {} for i, line in enumerate(f.readlines()): if i == 0: continue ins_id, sem_id, _ = line.strip().split() # shift id by 1 because we want it to start from 0! # ignore_label becomes 255 map_id[int(ins_id)] = int(sem_id) - 1 for cat in category_dict: cat["id"] = map_id[cat["id"]] filenames = sorted(glob.glob(os.path.join(image_dir, "*.jpg"))) ann_dict = {} images = [] annotations = [] for idx, filename in enumerate(tqdm.tqdm(filenames)): image = {} image_id = os.path.basename(filename).split(".")[0] image["id"] = image_id image["file_name"] = os.path.basename(filename) original_format = np.array(Image.open(filename)) image["width"] = original_format.shape[1] image["height"] = original_format.shape[0] images.append(image) filename_instance = os.path.join(instance_dir, image_id + ".png") ins_seg = np.asarray(Image.open(filename_instance)) assert ins_seg.dtype == np.uint8 instance_cat_ids = ins_seg[..., 0] # instance id starts from 1! # because 0 is reserved as VOID label instance_ins_ids = ins_seg[..., 1] # process things for thing_id in np.unique(instance_ins_ids): if thing_id == 0: continue mask = instance_ins_ids == thing_id instance_cat_id = np.unique(instance_cat_ids[mask]) assert len(instance_cat_id) == 1 anno = {} anno['id'] = ann_id ann_id += 1 anno['image_id'] = image['id'] anno["iscrowd"] = int(0) anno["category_id"] = int(map_id[instance_cat_id[0]]) inds = np.nonzero(mask) ymin, ymax = inds[0].min(), inds[0].max() xmin, xmax = inds[1].min(), inds[1].max() anno["bbox"] = [int(xmin), int(ymin), int(xmax - xmin + 1), int(ymax - ymin + 1)] # if xmax <= xmin or ymax <= ymin: # continue rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] rle["counts"] = rle["counts"].decode("utf-8") anno["segmentation"] = rle anno["area"] = int(mask_util.area(rle)) annotations.append(anno) # save this ann_dict['images'] = images ann_dict['categories'] = category_dict ann_dict['annotations'] = annotations save_json(ann_dict, out_file)