import os import sys if "APP_PATH" in os.environ: app_path = os.path.abspath(os.environ["APP_PATH"]) if os.getcwd() != app_path: # fix sys.path for import os.chdir(app_path) if app_path not in sys.path: sys.path.append(app_path) os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # For some reason, transformers decided to use .isin for a simple op, which is not supported on MPS import gradio as gr import pypdfium2 from texify.inference import batch_inference from texify.model.model import load_model from texify.model.processor import load_processor from texify.output import replace_katex_invalid from PIL import Image MAX_WIDTH = 800 MAX_HEIGHT = 1000 def load_model_cached(): return load_model() def load_processor_cached(): return load_processor() def infer_image(pil_image, bbox, temperature, model, processor): input_img = pil_image.crop(bbox) model_output = batch_inference([input_img], model, processor, temperature=temperature) return model_output[0] def open_pdf(pdf_file): return pypdfium2.PdfDocument(pdf_file) def count_pdf(pdf_file): doc = open_pdf(pdf_file) return len(doc) def get_page_image(pdf_file, page_num, dpi=96): doc = open_pdf(pdf_file) renderer = doc.render( pypdfium2.PdfBitmap.to_pil, page_indices=[page_num - 1], scale=dpi / 72, ) png = list(renderer)[0] png_image = png.convert("RGB") return png_image def get_uploaded_image(in_file): return Image.open(in_file).convert("RGB") def resize_image(pil_image): if pil_image is None: return pil_image.thumbnail((MAX_WIDTH, MAX_HEIGHT), Image.Resampling.LANCZOS) def texify(img, box, temperature): img_pil = Image.fromarray(img).convert("RGB") bbox_list = [] if box is not None and len(box[1]) > 0 and len(sections) > 0: for idx, ((x_start, y_start, x_end, y_end), _) in enumerate(sections): left = min(x_start, x_end) right = max(x_start, x_end) top = min(y_start, y_end) bottom = max(y_start, y_end) bbox_list.append((left, top, right, bottom)) else: bbox_list = [(0, 0, img_pil.width, img_pil.height)] output = "" inferences = [infer_image(img_pil, bbox, temperature, model, processor) for bbox in bbox_list] for idx, inference in enumerate(reversed(inferences)): output += f"### {len(sections) - idx}\n" katex_markdown = replace_katex_invalid(inference) output += katex_markdown + "\n" output += "\n" return output # ROI means Region Of Interest. It is the region where the user clicks # to specify the location of the watermark. ROI_coordinates = { 'x_temp': 0, 'y_temp': 0, 'x_new': 0, 'y_new': 0, 'clicks': 0, } sections = [] def get_select_coordinates(img, evt: gr.SelectData): # update new coordinates ROI_coordinates['clicks'] += 1 ROI_coordinates['x_temp'] = ROI_coordinates['x_new'] ROI_coordinates['y_temp'] = ROI_coordinates['y_new'] ROI_coordinates['x_new'] = evt.index[0] ROI_coordinates['y_new'] = evt.index[1] # compare start end coordinates x_start = ROI_coordinates['x_new'] if (ROI_coordinates['x_new'] < ROI_coordinates['x_temp']) else ROI_coordinates['x_temp'] y_start = ROI_coordinates['y_new'] if (ROI_coordinates['y_new'] < ROI_coordinates['y_temp']) else ROI_coordinates['y_temp'] x_end = ROI_coordinates['x_new'] if (ROI_coordinates['x_new'] > ROI_coordinates['x_temp']) else ROI_coordinates['x_temp'] y_end = ROI_coordinates['y_new'] if (ROI_coordinates['y_new'] > ROI_coordinates['y_temp']) else ROI_coordinates['y_temp'] if ROI_coordinates['clicks'] % 2 == 0: sections[len(sections) - 1] = ((x_start, y_start, x_end, y_end), f"Mask {len(sections)}") # both start and end point get return (img, sections) else: point_width = int(img.shape[0]*0.05) sections.append(((ROI_coordinates['x_new'], ROI_coordinates['y_new'], ROI_coordinates['x_new'] + point_width, ROI_coordinates['y_new'] + point_width), f"Click second point for Mask {len(sections) + 1}")) return (img, sections) def del_select_coordinates(img, evt: gr.SelectData): del sections[evt.index] # recreate section names for i in range(len(sections)): sections[i] = (sections[i][0], f"Mask {i + 1}") # last section clicking second point not complete if ROI_coordinates['clicks'] % 2 != 0: if len(sections) == evt.index: # delete last section ROI_coordinates['clicks'] -= 1 else: # recreate last section name for second point ROI_coordinates['clicks'] -= 2 sections[len(sections) - 1] = (sections[len(sections) - 1][0], f"Click second point for Mask {len(sections) + 1}") else: ROI_coordinates['clicks'] -= 2 return (img[0], sections) # Load models if not already loaded in reload mode if 'model' not in globals(): model = load_model_cached() processor = load_processor_cached() with gr.Blocks(title="Texify") as demo: gr.Markdown(""" After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right. If you have already cropped your image, select "OCR image" in the sidebar instead. """) with gr.Row(): with gr.Column(): in_file = gr.File(label="PDF file or image:", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".webp"]) in_num = gr.Slider(label="Page number", minimum=1, maximum=100, value=1, step=1) in_img = gr.Image(label="Select ROI of Image", type="numpy", sources=None) in_temperature = gr.Slider(label="Generation temperature", minimum=0.0, maximum=1.0, value=0.0, step=0.05) in_btn = gr.Button("OCR ROI") with gr.Column(): gr.Markdown(""" ### Usage tips - Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info. - Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple. - You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is. - Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere. """) in_box = gr.AnnotatedImage( label="ROI", color_map={ "ROI of OCR": "#9987FF", "Click second point for ROI": "#f44336"} ) markdown_result = gr.Markdown(label="Markdown of results") def show_image(file, num=1): sections = [] if file.endswith('.pdf'): count = count_pdf(file) img = get_page_image(file, num) # Resize to max bounds resize_image(img) return [ gr.update(visible=True, maximum=count), gr.update(value=img)] else: img = get_uploaded_image(file) # Resize to max bounds resize_image(img) return [ gr.update(visible=False), gr.update(value=img)] in_file.upload( fn=show_image, inputs=[in_file], outputs=[in_num, in_img], ) in_num.change( fn=show_image, inputs=[in_file, in_num], outputs=[in_num, in_img], ) in_img.select( fn=get_select_coordinates, inputs=[in_img], outputs=in_box ) in_box.select( fn=del_select_coordinates, inputs=in_box, outputs=in_box ) in_btn.click( fn=texify, inputs=[in_img, in_box, in_temperature], outputs=[markdown_result] ) if __name__ == "__main__": demo.launch()