"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats Usage: $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 """ import argparse from models.common import * from utils import google_utils if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') parser.add_argument('--batch-size', type=int, default=1, help='batch size') opt = parser.parse_args() opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand print(opt) # Input img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection # Load PyTorch model google_utils.attempt_download(opt.weights) model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float() model.eval() model.model[-1].export = True # set Detect() layer export=True y = model(img) # dry run # TorchScript export try: print('\nStarting TorchScript export with torch %s...' % torch.__version__) f = opt.weights.replace('.pt', '.torchscript') # filename ts = torch.jit.trace(model, img) ts.save(f) print('TorchScript export success, saved as %s' % f) except Exception as e: print('TorchScript export failure: %s' % e) # ONNX export try: import onnx print('\nStarting ONNX export with onnx %s...' % onnx.__version__) f = opt.weights.replace('.pt', '.onnx') # filename model.fuse() # only for ONNX torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'], output_names=['classes', 'boxes'] if y is None else ['output']) # Checks onnx_model = onnx.load(f) # load onnx model onnx.checker.check_model(onnx_model) # check onnx model print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model print('ONNX export success, saved as %s' % f) except Exception as e: print('ONNX export failure: %s' % e) # CoreML export try: import coremltools as ct print('\nStarting CoreML export with coremltools %s...' % ct.__version__) # convert model from torchscript and apply pixel scaling as per detect.py model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1/255.0, bias=[0, 0, 0])]) f = opt.weights.replace('.pt', '.mlmodel') # filename model.save(f) print('CoreML export success, saved as %s' % f) except Exception as e: print('CoreML export failure: %s' % e) # Finish print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')