# This file contains modules common to various models import math import numpy as np import torch import torch.nn as nn from PIL import Image, ImageDraw from utils.datasets import letterbox from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh from utils.plots import color_list def autopad(k, p=None): # kernel, padding # Pad to 'same' if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p def DWConv(c1, c2, k=1, s=1, act=True): # Depthwise convolution return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.Hardswish() if act else nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x)) class Bottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(Bottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class BottleneckCSP(nn.Module): # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(BottleneckCSP, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) self.cv4 = Conv(2 * c_, c2, 1, 1) self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) self.act = nn.LeakyReLU(0.1, inplace=True) self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) def forward(self, x): y1 = self.cv3(self.m(self.cv1(x))) y2 = self.cv2(x) return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13)): super(SPP, self).__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): x = self.cv1(x) return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class Focus(nn.Module): # Focus wh information into c-space def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super(Focus, self).__init__() self.conv = Conv(c1 * 4, c2, k, s, p, g, act) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) class Concat(nn.Module): # Concatenate a list of tensors along dimension def __init__(self, dimension=1): super(Concat, self).__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) class NMS(nn.Module): # Non-Maximum Suppression (NMS) module conf = 0.25 # confidence threshold iou = 0.45 # IoU threshold classes = None # (optional list) filter by class def __init__(self): super(NMS, self).__init__() def forward(self, x): return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) class autoShape(nn.Module): # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS img_size = 640 # inference size (pixels) conf = 0.25 # NMS confidence threshold iou = 0.45 # NMS IoU threshold classes = None # (optional list) filter by class def __init__(self, model): super(autoShape, self).__init__() self.model = model.eval() def forward(self, imgs, size=640, augment=False, profile=False): # supports inference from various sources. For height=720, width=1280, RGB images example inputs are: # opencv: imgs = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3) # PIL: imgs = Image.open('image.jpg') # HWC x(720,1280,3) # numpy: imgs = np.zeros((720,1280,3)) # HWC # torch: imgs = torch.zeros(16,3,720,1280) # BCHW # multiple: imgs = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images p = next(self.model.parameters()) # for device and type if isinstance(imgs, torch.Tensor): # torch return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference # Pre-process if not isinstance(imgs, list): imgs = [imgs] shape0, shape1 = [], [] # image and inference shapes batch = range(len(imgs)) # batch size for i in batch: imgs[i] = np.array(imgs[i]) # to numpy if imgs[i].shape[0] < 5: # image in CHW imgs[i] = imgs[i].transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) imgs[i] = imgs[i][:, :, :3] if imgs[i].ndim == 3 else np.tile(imgs[i][:, :, None], 3) # enforce 3ch input s = imgs[i].shape[:2] # HWC shape0.append(s) # image shape g = (size / max(s)) # gain shape1.append([y * g for y in s]) shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape x = [letterbox(imgs[i], new_shape=shape1, auto=False)[0] for i in batch] # pad x = np.stack(x, 0) if batch[-1] else x[0][None] # stack x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 # Inference with torch.no_grad(): y = self.model(x, augment, profile)[0] # forward y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS # Post-process for i in batch: if y[i] is not None: y[i][:, :4] = scale_coords(shape1, y[i][:, :4], shape0[i]) return Detections(imgs, y, self.names) class Detections: # detections class for YOLOv5 inference results def __init__(self, imgs, pred, names=None): super(Detections, self).__init__() self.imgs = imgs # list of images as numpy arrays self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) self.names = names # class names self.xyxy = pred # xyxy pixels self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels d = pred[0].device # device gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized self.n = len(self.pred) def display(self, pprint=False, show=False, save=False): colors = color_list() for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' if pred is not None: for c in pred[:, -1].unique(): n = (pred[:, -1] == c).sum() # detections per class str += f'{n} {self.names[int(c)]}s, ' # add to string if show or save: img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np for *box, conf, cls in pred: # xyxy, confidence, class # str += '%s %.2f, ' % (names[int(cls)], conf) # label ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot if save: f = f'results{i}.jpg' str += f"saved to '{f}'" img.save(f) # save if show: img.show(f'Image {i}') # show if pprint: print(str) def print(self): self.display(pprint=True) # print results def show(self): self.display(show=True) # show results def save(self): self.display(save=True) # save results def __len__(self): return self.n def tolist(self): # return a list of Detections objects, i.e. 'for result in results.tolist():' x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)] for d in x: for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: setattr(d, k, getattr(d, k)[0]) # pop out of list return x class Flatten(nn.Module): # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions @staticmethod def forward(x): return x.view(x.size(0), -1) class Classify(nn.Module): # Classification head, i.e. x(b,c1,20,20) to x(b,c2) def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups super(Classify, self).__init__() self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) # to x(b,c2,1,1) self.flat = Flatten() def forward(self, x): z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list return self.flat(self.conv(z)) # flatten to x(b,c2)