import logging import math import os import time from copy import deepcopy import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torchvision.models as models logger = logging.getLogger(__name__) def init_seeds(seed=0): torch.manual_seed(seed) # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html if seed == 0: # slower, more reproducible cudnn.deterministic = True cudnn.benchmark = False else: # faster, less reproducible cudnn.deterministic = False cudnn.benchmark = True def select_device(device='', batch_size=None): # device = 'cpu' or '0' or '0,1,2,3' cpu_request = device.lower() == 'cpu' if device and not cpu_request: # if device requested other than 'cpu' os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity cuda = False if cpu_request else torch.cuda.is_available() if cuda: c = 1024 ** 2 # bytes to MB ng = torch.cuda.device_count() if ng > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng) x = [torch.cuda.get_device_properties(i) for i in range(ng)] s = 'Using CUDA ' for i in range(0, ng): if i == 1: s = ' ' * len(s) logger.info("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" % (s, i, x[i].name, x[i].total_memory / c)) else: logger.info('Using CPU') logger.info('') # skip a line return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): torch.cuda.synchronize() if torch.cuda.is_available() else None return time.time() def is_parallel(model): return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) def intersect_dicts(da, db, exclude=()): # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} def initialize_weights(model): for m in model.modules(): t = type(m) if t is nn.Conv2d: pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]: m.inplace = True def find_modules(model, mclass=nn.Conv2d): # Finds layer indices matching module class 'mclass' return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] def sparsity(model): # Return global model sparsity a, b = 0., 0. for p in model.parameters(): a += p.numel() b += (p == 0).sum() return b / a def prune(model, amount=0.3): # Prune model to requested global sparsity import torch.nn.utils.prune as prune print('Pruning model... ', end='') for name, m in model.named_modules(): if isinstance(m, nn.Conv2d): prune.l1_unstructured(m, name='weight', amount=amount) # prune prune.remove(m, 'weight') # make permanent print(' %.3g global sparsity' % sparsity(model)) def fuse_conv_and_bn(conv, bn): # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ # init fusedconv = nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True).requires_grad_(False).to(conv.weight.device) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) # prepare spatial bias b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def model_info(model, verbose=False): # Plots a line-by-line description of a PyTorch model n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients if verbose: print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) try: # FLOPS from thop import profile flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2 fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS except: fs = '' logger.info( 'Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs)) def load_classifier(name='resnet101', n=2): # Loads a pretrained model reshaped to n-class output model = models.__dict__[name](pretrained=True) # Display model properties input_size = [3, 224, 224] input_space = 'RGB' input_range = [0, 1] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] for x in ['input_size', 'input_space', 'input_range', 'mean', 'std']: print(x + ' =', eval(x)) # Reshape output to n classes filters = model.fc.weight.shape[1] model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) model.fc.out_features = n return model def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio # scales img(bs,3,y,x) by ratio if ratio == 1.0: return img else: h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize if not same_shape: # pad/crop img gs = 32 # (pixels) grid size h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean def copy_attr(a, b, include=(), exclude=()): # Copy attributes from b to a, options to only include [...] and to exclude [...] for k, v in b.__dict__.items(): if (len(include) and k not in include) or k.startswith('_') or k in exclude: continue else: setattr(a, k, v) class ModelEMA: """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage A smoothed version of the weights is necessary for some training schemes to perform well. This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers. """ def __init__(self, model, decay=0.9999, updates=0): # Create EMA self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA # if next(model.parameters()).device.type != 'cpu': # self.ema.half() # FP16 EMA self.updates = updates # number of EMA updates self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) for p in self.ema.parameters(): p.requires_grad_(False) def update(self, model): # Update EMA parameters with torch.no_grad(): self.updates += 1 d = self.decay(self.updates) msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict for k, v in self.ema.state_dict().items(): if v.dtype.is_floating_point: v *= d v += (1. - d) * msd[k].detach() def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): # Update EMA attributes copy_attr(self.ema, model, include, exclude)