# Hyperparameters for VOC finetuning # python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50 # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials # Hyperparameter Evolution Results # Generations: 306 # P R mAP.5 mAP.5:.95 box obj cls # Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146 lr0: 0.0032 lrf: 0.12 momentum: 0.843 weight_decay: 0.00036 warmup_epochs: 2.0 warmup_momentum: 0.5 warmup_bias_lr: 0.05 box: 0.0296 cls: 0.243 cls_pw: 0.631 obj: 0.301 obj_pw: 0.911 iou_t: 0.2 anchor_t: 2.91 # anchors: 3.63 fl_gamma: 0.0 hsv_h: 0.0138 hsv_s: 0.664 hsv_v: 0.464 degrees: 0.373 translate: 0.245 scale: 0.898 shear: 0.602 perspective: 0.0 flipud: 0.00856 fliplr: 0.5 mosaic: 1.0 mixup: 0.243 copy_paste: 0.0