"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/ Usage: import torch model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80) """ dependencies = ['torch', 'yaml'] import os import torch from models.yolo import Model from utils.general import set_logging from utils.google_utils import attempt_download set_logging() def create(name, pretrained, channels, classes): """Creates a specified YOLOv5 model Arguments: name (str): name of model, i.e. 'yolov5s' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes Returns: pytorch model """ config = os.path.join(os.path.dirname(__file__), 'models', f'{name}.yaml') # model.yaml path try: model = Model(config, channels, classes) if pretrained: fname = f'{name}.pt' # checkpoint filename attempt_download(fname) # download if not found locally ckpt = torch.load(fname, map_location=torch.device('cpu')) # load state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter model.load_state_dict(state_dict, strict=False) # load if len(ckpt['model'].names) == classes: model.names = ckpt['model'].names # set class names attribute # model = model.autoshape() # for autoshaping of PIL/cv2/np inputs and NMS return model except Exception as e: help_url = 'https://github.com/ultralytics/yolov5/issues/36' s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url raise Exception(s) from e def yolov5s(pretrained=False, channels=3, classes=80): """YOLOv5-small model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5s', pretrained, channels, classes) def yolov5m(pretrained=False, channels=3, classes=80): """YOLOv5-medium model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5m', pretrained, channels, classes) def yolov5l(pretrained=False, channels=3, classes=80): """YOLOv5-large model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5l', pretrained, channels, classes) def yolov5x(pretrained=False, channels=3, classes=80): """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5 Arguments: pretrained (bool): load pretrained weights into the model, default=False channels (int): number of input channels, default=3 classes (int): number of model classes, default=80 Returns: pytorch model """ return create('yolov5x', pretrained, channels, classes) if __name__ == '__main__': model = create(name='yolov5s', pretrained=True, channels=3, classes=80) # example model = model.fuse().eval().autoshape() # for autoshaping of PIL/cv2/np inputs and NMS # Verify inference from PIL import Image img = Image.open('inference/images/zidane.jpg') y = model(img) print(y[0].shape)