# PyTorch utils import logging import math import os import subprocess import time from contextlib import contextmanager from copy import deepcopy from pathlib import Path import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torchvision try: import thop # for FLOPS computation except ImportError: thop = None logger = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): """ Decorator to make all processes in distributed training wait for each local_master to do something. """ if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def init_torch_seeds(seed=0): # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html torch.manual_seed(seed) if seed == 0: # slower, more reproducible cudnn.benchmark, cudnn.deterministic = False, True else: # faster, less reproducible cudnn.benchmark, cudnn.deterministic = True, False def git_describe(): # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe if Path('.git').exists(): return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1] else: return '' def select_device(device='', batch_size=None): # device = 'cpu' or '0' or '0,1,2,3' s = f'YOLOv5 {git_describe()} torch {torch.__version__} ' # string cpu = device.lower() == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability cuda = torch.cuda.is_available() and not cpu if cuda: n = torch.cuda.device_count() if n > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * len(s) for i, d in enumerate(device.split(',') if device else range(n)): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB else: s += 'CPU\n' logger.info(s) # skip a line return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): # pytorch-accurate time if torch.cuda.is_available(): torch.cuda.synchronize() return time.time() def profile(x, ops, n=100, device=None): # profile a pytorch module or list of modules. Example usage: # x = torch.randn(16, 3, 640, 640) # input # m1 = lambda x: x * torch.sigmoid(x) # m2 = nn.SiLU() # profile(x, [m1, m2], n=100) # profile speed over 100 iterations device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') x = x.to(device) x.requires_grad = True print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") for m in ops if isinstance(ops, list) else [ops]: m = m.to(device) if hasattr(m, 'to') else m # device m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward try: flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS except: flops = 0 for _ in range(n): t[0] = time_synchronized() y = m(x) t[1] = time_synchronized() try: _ = y.sum().backward() t[2] = time_synchronized() except: # no backward method t[2] = float('nan') dtf += (t[1] - t[0]) * 1000 / n # ms per op forward dtb += (t[2] - t[1]) * 1000 / n # ms per op backward s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}') def is_parallel(model): return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) def intersect_dicts(da, db, exclude=()): # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} def initialize_weights(model): for m in model.modules(): t = type(m) if t is nn.Conv2d: pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: m.inplace = True def find_modules(model, mclass=nn.Conv2d): # Finds layer indices matching module class 'mclass' return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] def sparsity(model): # Return global model sparsity a, b = 0., 0. for p in model.parameters(): a += p.numel() b += (p == 0).sum() return b / a def prune(model, amount=0.3): # Prune model to requested global sparsity import torch.nn.utils.prune as prune print('Pruning model... ', end='') for name, m in model.named_modules(): if isinstance(m, nn.Conv2d): prune.l1_unstructured(m, name='weight', amount=amount) # prune prune.remove(m, 'weight') # make permanent print(' %.3g global sparsity' % sparsity(model)) def fuse_conv_and_bn(conv, bn): # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ fusedconv = nn.Conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True).requires_grad_(False).to(conv.weight.device) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) # prepare spatial bias b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def model_info(model, verbose=False, img_size=640): # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients if verbose: print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace('module_list.', '') print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) try: # FLOPS from thop import profile stride = int(model.stride.max()) if hasattr(model, 'stride') else 32 img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS except (ImportError, Exception): fs = '' logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") def load_classifier(name='resnet101', n=2): # Loads a pretrained model reshaped to n-class output model = torchvision.models.__dict__[name](pretrained=True) # ResNet model properties # input_size = [3, 224, 224] # input_space = 'RGB' # input_range = [0, 1] # mean = [0.485, 0.456, 0.406] # std = [0.229, 0.224, 0.225] # Reshape output to n classes filters = model.fc.weight.shape[1] model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) model.fc.out_features = n return model def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) # scales img(bs,3,y,x) by ratio constrained to gs-multiple if ratio == 1.0: return img else: h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize if not same_shape: # pad/crop img h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean def copy_attr(a, b, include=(), exclude=()): # Copy attributes from b to a, options to only include [...] and to exclude [...] for k, v in b.__dict__.items(): if (len(include) and k not in include) or k.startswith('_') or k in exclude: continue else: setattr(a, k, v) class ModelEMA: """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage A smoothed version of the weights is necessary for some training schemes to perform well. This class is sensitive where it is initialized in the sequence of model init, GPU assignment and distributed training wrappers. """ def __init__(self, model, decay=0.9999, updates=0): # Create EMA self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA # if next(model.parameters()).device.type != 'cpu': # self.ema.half() # FP16 EMA self.updates = updates # number of EMA updates self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) for p in self.ema.parameters(): p.requires_grad_(False) def update(self, model): # Update EMA parameters with torch.no_grad(): self.updates += 1 d = self.decay(self.updates) msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict for k, v in self.ema.state_dict().items(): if v.dtype.is_floating_point: v *= d v += (1. - d) * msd[k].detach() def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): # Update EMA attributes copy_attr(self.ema, model, include, exclude)