# Auto-anchor utils import numpy as np import torch import yaml from scipy.cluster.vq import kmeans from tqdm import tqdm from utils.general import colorstr def check_anchor_order(m): # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary a = m.anchor_grid.prod(-1).view(-1) # anchor area da = a[-1] - a[0] # delta a ds = m.stride[-1] - m.stride[0] # delta s if da.sign() != ds.sign(): # same order print('Reversing anchor order') m.anchors[:] = m.anchors.flip(0) m.anchor_grid[:] = m.anchor_grid.flip(0) def check_anchors(dataset, model, thr=4.0, imgsz=640): # Check anchor fit to data, recompute if necessary prefix = colorstr('autoanchor: ') print(f'\n{prefix}Analyzing anchors... ', end='') m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh def metric(k): # compute metric r = wh[:, None] / k[None] x = torch.min(r, 1. / r).min(2)[0] # ratio metric best = x.max(1)[0] # best_x aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold bpr = (best > 1. / thr).float().mean() # best possible recall return bpr, aat bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2)) print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='') if bpr < 0.98: # threshold to recompute print('. Attempting to improve anchors, please wait...') na = m.anchor_grid.numel() // 2 # number of anchors new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) new_bpr = metric(new_anchors.reshape(-1, 2))[0] if new_bpr > bpr: # replace anchors new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors) m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss check_anchor_order(m) print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.') else: print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.') print('') # newline def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): """ Creates kmeans-evolved anchors from training dataset Arguments: path: path to dataset *.yaml, or a loaded dataset n: number of anchors img_size: image size used for training thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 gen: generations to evolve anchors using genetic algorithm verbose: print all results Return: k: kmeans evolved anchors Usage: from utils.autoanchor import *; _ = kmean_anchors() """ thr = 1. / thr prefix = colorstr('autoanchor: ') def metric(k, wh): # compute metrics r = wh[:, None] / k[None] x = torch.min(r, 1. / r).min(2)[0] # ratio metric # x = wh_iou(wh, torch.tensor(k)) # iou metric return x, x.max(1)[0] # x, best_x def anchor_fitness(k): # mutation fitness _, best = metric(torch.tensor(k, dtype=torch.float32), wh) return (best * (best > thr).float()).mean() # fitness def print_results(k): k = k[np.argsort(k.prod(1))] # sort small to large x, best = metric(k, wh0) bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr') print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' f'past_thr={x[x > thr].mean():.3f}-mean: ', end='') for i, x in enumerate(k): print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg return k if isinstance(path, str): # *.yaml file with open(path) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict from utils.datasets import LoadImagesAndLabels dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) else: dataset = path # dataset # Get label wh shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh # Filter i = (wh0 < 3.0).any(1).sum() if i: print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 # Kmeans calculation print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...') s = wh.std(0) # sigmas for whitening k, dist = kmeans(wh / s, n, iter=30) # points, mean distance k *= s wh = torch.tensor(wh, dtype=torch.float32) # filtered wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered k = print_results(k) # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.savefig('wh.png', dpi=200) # Evolve npr = np.random f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar for _ in pbar: v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) kg = (k.copy() * v).clip(min=2.0) fg = anchor_fitness(kg) if fg > f: f, k = fg, kg.copy() pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' if verbose: print_results(k) return print_results(k)