"""YOLOv5 PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/ Usage: import torch model = torch.hub.load('ultralytics/yolov5', 'yolov5s') """ from pathlib import Path import torch from models.yolo import Model from utils.general import check_requirements, set_logging from utils.google_utils import attempt_download from utils.torch_utils import select_device dependencies = ['torch', 'yaml'] check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop')) def create(name, pretrained, channels, classes, autoshape, verbose): """Creates a specified YOLOv5 model Arguments: name (str): name of model, i.e. 'yolov5s' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes Returns: pytorch model """ try: set_logging(verbose=verbose) cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path model = Model(cfg, channels, classes) if pretrained: fname = f'{name}.pt' # checkpoint filename attempt_download(fname) # download if not found locally ckpt = torch.load(fname, map_location=torch.device('cpu')) # load msd = model.state_dict() # model state_dict csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter model.load_state_dict(csd, strict=False) # load if len(ckpt['model'].names) == classes: model.names = ckpt['model'].names # set class names attribute if autoshape: model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available return model.to(device) except Exception as e: help_url = 'https://github.com/ultralytics/yolov5/issues/36' s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url raise Exception(s) from e def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True): """YOLOv5-custom model https://github.com/ultralytics/yolov5 Arguments (3 options): path_or_model (str): 'path/to/model.pt' path_or_model (dict): torch.load('path/to/model.pt') path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] Returns: pytorch model """ set_logging(verbose=verbose) model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint if isinstance(model, dict): model = model['ema' if model.get('ema') else 'model'] # load model hub_model = Model(model.yaml).to(next(model.parameters()).device) # create hub_model.load_state_dict(model.float().state_dict()) # load state_dict hub_model.names = model.names # class names if autoshape: hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available return hub_model.to(device) def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): # YOLOv5-small model https://github.com/ultralytics/yolov5 return create('yolov5s', pretrained, channels, classes, autoshape, verbose) def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): # YOLOv5-medium model https://github.com/ultralytics/yolov5 return create('yolov5m', pretrained, channels, classes, autoshape, verbose) def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): # YOLOv5-large model https://github.com/ultralytics/yolov5 return create('yolov5l', pretrained, channels, classes, autoshape, verbose) def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): # YOLOv5-xlarge model https://github.com/ultralytics/yolov5 return create('yolov5x', pretrained, channels, classes, autoshape, verbose) def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5 return create('yolov5s6', pretrained, channels, classes, autoshape, verbose) def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5 return create('yolov5m6', pretrained, channels, classes, autoshape, verbose) def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5 return create('yolov5l6', pretrained, channels, classes, autoshape, verbose) def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True): # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5 return create('yolov5x6', pretrained, channels, classes, autoshape, verbose) if __name__ == '__main__': model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained # model = custom(path_or_model='path/to/model.pt') # custom # Verify inference import cv2 import numpy as np from PIL import Image imgs = ['data/images/zidane.jpg', # filename 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg', # URI cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV Image.open('data/images/bus.jpg'), # PIL np.zeros((320, 640, 3))] # numpy results = model(imgs) # batched inference results.print() results.save()