import gradio as gr import torch import os from glob import glob from pathlib import Path from typing import Optional from diffusers import StableVideoDiffusionPipeline from diffusers.utils import export_to_video from PIL import Image import random import spaces pipe = StableVideoDiffusionPipeline.from_pretrained( "vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16" ) pipe.to("cuda") max_64_bit_int = 2**63 - 1 @spaces.GPU(duration=120) def sample( image: Image, seed: Optional[int] = 42, randomize_seed: bool = True, motion_bucket_id: int = 127, fps_id: int = 6, noise_aug_strength: float = 0.1, decoding_t: int = 3, frame_format: str = "webp", version: str = "svd_xt", device: str = "cuda", output_folder: str = "outputs", ): if image.mode == "RGBA": image = image.convert("RGB") if randomize_seed: seed = random.randint(0, max_64_bit_int) generator = torch.manual_seed(seed) os.makedirs(output_folder, exist_ok=True) base_count = len(glob(os.path.join(output_folder, "*.mp4"))) video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0] export_to_video(frames, video_path, fps=fps_id) return video_path, gr.update(label="Generated frames in *." + frame_format + " format", format = frame_format, value = frames), seed def resize_image(image, output_size=(1024, 576)): # Calculate aspect ratios target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size image_aspect = image.width / image.height # Aspect ratio of the original image # Do not touch the image if the size is good if image.width == output_size[0] and image.height == output_size[1]: return image # Resize if the original image is larger if image_aspect > target_aspect: # Resize the image to match the target height, maintaining aspect ratio new_height = output_size[1] new_width = int(new_height * image_aspect) resized_image = image.resize((new_width, new_height), Image.LANCZOS) # Calculate coordinates for cropping left = (new_width - output_size[0]) / 2 top = 0 right = (new_width + output_size[0]) / 2 bottom = output_size[1] else: # Resize the image to match the target width, maintaining aspect ratio new_width = output_size[0] new_height = int(new_width / image_aspect) resized_image = image.resize((new_width, new_height), Image.LANCZOS) # Calculate coordinates for cropping left = 0 top = (new_height - output_size[1]) / 2 right = output_size[0] bottom = (new_height + output_size[1]) / 2 # Crop the image cropped_image = resized_image.crop((left, top, right, bottom)) return cropped_image with gr.Blocks() as demo: gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact)) #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd). ''') with gr.Row(): with gr.Column(): image = gr.Image(label="Upload your image", type="pil") with gr.Accordion("Advanced options", open=False): fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30) motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1) decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1) frame_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="webp", interactive=True) seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) generate_btn = gr.Button(value="Animate", variant="primary") with gr.Column(): video = gr.Video(label="Generated video") gallery = gr.Gallery(label="Generated frames") image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, frame_format], outputs=[video, gallery, seed], api_name="video") if __name__ == "__main__": demo.launch(share=True, show_api=False)