# ------------------------------------------------------------------------ # Grounding DINO # url: https://github.com/IDEA-Research/GroundingDINO # Copyright (c) 2023 IDEA. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ import torch import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from torch import Tensor, nn from torchvision.ops.boxes import nms from transformers import BertConfig, BertModel, BertPreTrainedModel from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions class BertModelWarper(nn.Module): def __init__(self, bert_model): super().__init__() # self.bert = bert_modelc self.config = bert_model.config self.embeddings = bert_model.embeddings self.encoder = bert_model.encoder self.pooler = bert_model.pooler self.get_extended_attention_mask = bert_model.get_extended_attention_mask self.invert_attention_mask = bert_model.invert_attention_mask self.get_head_mask = bert_model.get_head_mask def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] if past_key_values is not None else 0 ) if attention_mask is None: attention_mask = torch.ones( ((batch_size, seq_length + past_key_values_length)), device=device ) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, device ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': # import ipdb; ipdb.set_trace() # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class TextEncoderShell(nn.Module): def __init__(self, text_encoder): super().__init__() self.text_encoder = text_encoder self.config = self.text_encoder.config def forward(self, **kw): # feed into text encoder return self.text_encoder(**kw) def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer): """Generate attention mask between each pair of special tokens Args: input_ids (torch.Tensor): input ids. Shape: [bs, num_token] special_tokens_mask (list): special tokens mask. Returns: torch.Tensor: attention mask between each special tokens. """ input_ids = tokenized["input_ids"] bs, num_token = input_ids.shape # special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool() for special_token in special_tokens_list: special_tokens_mask |= input_ids == special_token # idxs: each row is a list of indices of special tokens idxs = torch.nonzero(special_tokens_mask) # generate attention mask and positional ids attention_mask = ( torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1) ) position_ids = torch.zeros((bs, num_token), device=input_ids.device) previous_col = 0 for i in range(idxs.shape[0]): row, col = idxs[i] if (col == 0) or (col == num_token - 1): attention_mask[row, col, col] = True position_ids[row, col] = 0 else: attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True position_ids[row, previous_col + 1 : col + 1] = torch.arange( 0, col - previous_col, device=input_ids.device ) previous_col = col # # padding mask # padding_mask = tokenized['attention_mask'] # attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool() return attention_mask, position_ids.to(torch.long) def generate_masks_with_special_tokens_and_transfer_map(tokenized, special_tokens_list, tokenizer): """Generate attention mask between each pair of special tokens Args: input_ids (torch.Tensor): input ids. Shape: [bs, num_token] special_tokens_mask (list): special tokens mask. Returns: torch.Tensor: attention mask between each special tokens. """ input_ids = tokenized["input_ids"] bs, num_token = input_ids.shape # special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool() for special_token in special_tokens_list: special_tokens_mask |= input_ids == special_token # idxs: each row is a list of indices of special tokens idxs = torch.nonzero(special_tokens_mask) # generate attention mask and positional ids attention_mask = ( torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1) ) position_ids = torch.zeros((bs, num_token), device=input_ids.device) cate_to_token_mask_list = [[] for _ in range(bs)] previous_col = 0 for i in range(idxs.shape[0]): row, col = idxs[i] if (col == 0) or (col == num_token - 1): attention_mask[row, col, col] = True position_ids[row, col] = 0 else: attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True position_ids[row, previous_col + 1 : col + 1] = torch.arange( 0, col - previous_col, device=input_ids.device ) c2t_maski = torch.zeros((num_token), device=input_ids.device).bool() c2t_maski[previous_col + 1 : col] = True cate_to_token_mask_list[row].append(c2t_maski) previous_col = col cate_to_token_mask_list = [ torch.stack(cate_to_token_mask_listi, dim=0) for cate_to_token_mask_listi in cate_to_token_mask_list ] # # padding mask # padding_mask = tokenized['attention_mask'] # attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool() return attention_mask, position_ids.to(torch.long), cate_to_token_mask_list