import json import os import tempfile import gradio as gr from utils import evaluate, report from transformers import AutoTokenizer def process_jsonl_file(jsonl_file_path: str, api_key: str): try: content = open(jsonl_file_path, "r", encoding="utf-8").readlines() json_data = [json.loads(line) for line in content] if api_key is not None and api_key != "": json_data = evaluate(json_data, api_key) html_content = report(tasks=json_data) file_name_with_ext = os.path.basename(jsonl_file_path) file_name, _ = os.path.splitext(file_name_with_ext) with tempfile.NamedTemporaryFile( delete=False, prefix=f"{file_name}-report-", suffix=".html", mode="w", encoding="utf-8" ) as temp_file: temp_file.write(html_content) output_file = temp_file.name return output_file, "" except Exception as e: return None, e # Gradioデモ with gr.Blocks() as reporting: jsonl_input = gr.File(label="JSONLファイルをアップロード") api_key_input = gr.Textbox(label="GeminiのAPIキー(スコアのセルフ評価を行う場合)", type="password") gr.Markdown("APIキーの発行は[こちら](https://aistudio.google.com/app/apikey)") process_button = gr.Button("レポートを作成") output_file = gr.File(label="セルフ評価レポート") output_text = gr.Textbox(label="システムメッセージ") process_button.click( process_jsonl_file, inputs=[jsonl_input, api_key_input], outputs=[output_file, output_text] ) llm_jp_3 = "llm-jp/llm-jp-3-1.8b" gemma_2 = "google/gemma-2-2b" llm_jp_3_tokenizer = AutoTokenizer.from_pretrained(llm_jp_3, trust_remote_code=True) gemma_2_tokenizer = AutoTokenizer.from_pretrained(gemma_2, trust_remote_code=True) tokenizers = { "LLM-JP-3": llm_jp_3_tokenizer, "Gemma-2": gemma_2_tokenizer } def tokenize_text(text: str, tokenizer_name: str): tokenizer = tokenizers[tokenizer_name] tokens = tokenizer.tokenize(text) colors = ['#FFCCCC', '#CCFFCC', '#CCCCFF', '#FFFFCC', '#CCFFFF', '#FFCCFF'] tokenized_text = ''.join([f'{token} ' for i, token in enumerate(tokens)]) token_count = len(tokens) return f"

{tokenized_text}

Token Count: {token_count}

" with gr.Blocks() as tokenization: with gr.Row(): tokenizer_dropdown = gr.Dropdown(label="Tokenizerを選択", choices=["LLM-JP-3", "Gemma-2"], value="LLM-JP-3") with gr.Row(): with gr.Column(): text_input = gr.Textbox(label="Input Text") with gr.Column(): tokenized_output = gr.HTML(label="Tokenized Output") tokenizer_dropdown.change(tokenize_text, inputs=[text_input, tokenizer_dropdown], outputs=tokenized_output) text_input.change(tokenize_text, inputs=[text_input, tokenizer_dropdown], outputs=tokenized_output) tabbed = gr.TabbedInterface( [reporting, tokenization], tab_names=["ELYZA-tasks-100(-TV) セルフ評価", "トークン化の可視化"], title="LLM開発支援ツール" ) if __name__ == "__main__": tabbed.launch()