import gradio.inputs import torch import gradio as gr from PIL import Image import tempfile import detect import os import shutil # result = detect.run(source=img, data="VOCdevkit/FLIR.yaml", weights="./best.pt") def de(image): # 创建临时文件夹 temp_path = tempfile.TemporaryDirectory(dir="./") temp_dir = temp_path.name # 临时图片的路径 temp_image_path = os.path.join(temp_dir, f"temp.jpg") # 存储临时图片 img = Image.fromarray(image) img.save(temp_image_path) # 结果图片的存储目录 temp_result_path = os.path.join(temp_dir, "tempresult") # 对临时图片进行检测 detect.run(source=temp_image_path, data="OCdevkit/FLIR.yaml", weights="./runs/train/exp/weights/best.pt", project=f'./{temp_dir}',name = 'tempresult', hide_conf=True) # 结果图片的路径 temp_result_path = os.path.join(temp_result_path, os.listdir(temp_result_path)[0]) # 读取结果图片 result_image = Image.open(temp_result_path).copy() # 删除临时文件夹 temp_path.cleanup() return result_image example_image= [ ["./VOCdevkit/images/train/video-2SReBn5LtAkL5HMj2-frame-005072-MA7NCLQGoqq9aHaiL.jpg"], ["./VOCdevkit/images/train/video-2rsjnZFyGQGeynfbv-frame-003708-6fPQbB7jtibwaYAE7.jpg"], ["./VOCdevkit/images/train/video-2SReBn5LtAkL5HMj2-frame-000317-HTgPBFgZyPdwQnNvE.jpg"], ["./VOCdevkit/images/val/video-jNQtRj6NGycZDEXpe-frame-002515-J3YntG8ntvZheKK3P.jpg"], ["./VOCdevkit/images/val/video-kDDWXrnLSoSdHCZ7S-frame-003063-eaKjPvPskDPjenZ8S.jpg"], ["./VOCdevkit/images/val/video-r68Yr9RPWEp5fW2ZF-frame-000333-X6K5iopqbmjKEsSqN.jpg"] ] iface = gr.Interface(fn=de, inputs=gr.Image(label="上传一张红外图像,仅支持jpg格式"), outputs="image", examples=example_image, share=True) iface.launch(share=True)