import os import time import torch import pickle import torch.distributed as dist def init_distributed(opt): opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available() if 'OMPI_COMM_WORLD_SIZE' not in os.environ: # application was started without MPI # default to single node with single process opt['env_info'] = 'no MPI' opt['world_size'] = 1 opt['local_size'] = 1 opt['rank'] = 0 opt['local_rank'] = 0 opt['master_address'] = '127.0.0.1' opt['master_port'] = '8673' else: # application was started with MPI # get MPI parameters opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE']) opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE']) opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK']) opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) # set up device if not opt['CUDA']: assert opt['world_size'] == 1, 'multi-GPU training without CUDA is not supported since we use NCCL as communication backend' opt['device'] = torch.device("cpu") else: torch.cuda.set_device(opt['local_rank']) opt['device'] = torch.device("cuda", opt['local_rank']) return opt def is_main_process(): rank = 0 if 'OMPI_COMM_WORLD_SIZE' in os.environ: rank = int(os.environ['OMPI_COMM_WORLD_RANK']) return rank == 0 def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() rank = dist.get_rank() if world_size == 1: return def _send_and_wait(r): if rank == r: tensor = torch.tensor(0, device="cuda") else: tensor = torch.tensor(1, device="cuda") dist.broadcast(tensor, r) while tensor.item() == 1: time.sleep(1) _send_and_wait(0) # now sync on the main process _send_and_wait(1) def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.IntTensor([tensor.numel()]).to("cuda") size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def broadcast_data(data): if not torch.distributed.is_initialized(): return data rank = dist.get_rank() if rank == 0: data_tensor = torch.tensor(data + [0], device="cuda") else: data_tensor = torch.tensor(data + [1], device="cuda") torch.distributed.broadcast(data_tensor, 0) while data_tensor.cpu().numpy()[-1] == 1: time.sleep(1) return data_tensor.cpu().numpy().tolist()[:-1] def reduce_sum(tensor): if get_world_size() <= 1: return tensor tensor = tensor.clone() dist.all_reduce(tensor, op=dist.ReduceOp.SUM) return tensor