# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from tqdm import tqdm from itertools import chain from torch.utils.data import Dataset class ConcatDataset(Dataset): def __init__(self, dataset, chunk_size=4096): self.dataset = dataset self.chunk_size = chunk_size self.samples = [] buffer = { "input_ids": [], "attention_mask": [], "labels": [], } for sample in tqdm(self.dataset, desc="Preprocessing dataset", dynamic_ncols=True): buffer = {k: v + sample[k] for k,v in buffer.items()} while len(next(iter(buffer.values()))) > self.chunk_size: self.samples.append({k: v[:self.chunk_size] for k,v in buffer.items()}) buffer = {k: v[self.chunk_size:] for k,v in buffer.items()} def __getitem__(self, idx): return self.samples[idx] def __len__(self): return len(self.samples)