# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import cv2 import torch import random import numpy as np from typing import Dict, List, Optional, Tuple def load_video(path): for i in range(3): try: cap = cv2.VideoCapture(path) frames = [] while True: ret, frame = cap.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frames.append(frame) else: break frames = np.stack(frames) return frames except Exception: print(f"failed loading {path} ({i} / 3)") if i == 2: raise ValueError(f"Unable to load {path}") class Compose(object): """Compose several preprocess together. Args: preprocess (list of ``Preprocess`` objects): list of preprocess to compose. """ def __init__(self, preprocess): self.preprocess = preprocess def __call__(self, sample): for t in self.preprocess: sample = t(sample) return sample def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.preprocess: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class Normalize(object): """Normalize a ndarray image with mean and standard deviation. """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, frames): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized Tensor image. """ frames = (frames - self.mean) / self.std return frames def __repr__(self): return self.__class__.__name__+'(mean={0}, std={1})'.format(self.mean, self.std) class CenterCrop(object): """Crop the given image at the center """ def __init__(self, size): self.size = size def __call__(self, frames): """ Args: img (numpy.ndarray): Images to be cropped. Returns: numpy.ndarray: Cropped image. """ t, h, w = frames.shape th, tw = self.size delta_w = int(round((w - tw))/2.) delta_h = int(round((h - th))/2.) frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw] return frames class RandomCrop(object): """Crop the given image at the center """ def __init__(self, size): self.size = size def __call__(self, frames): """ Args: img (numpy.ndarray): Images to be cropped. Returns: numpy.ndarray: Cropped image. """ t, h, w = frames.shape th, tw = self.size delta_w = random.randint(0, w-tw) delta_h = random.randint(0, h-th) frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw] return frames def __repr__(self): return self.__class__.__name__ + '(size={0})'.format(self.size) class HorizontalFlip(object): """Flip image horizontally. """ def __init__(self, flip_ratio): self.flip_ratio = flip_ratio def __call__(self, frames): """ Args: img (numpy.ndarray): Images to be flipped with a probability flip_ratio Returns: numpy.ndarray: Cropped image. """ t, h, w = frames.shape if random.random() < self.flip_ratio: for index in range(t): frames[index] = cv2.flip(frames[index], 1) return frames def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) batch_indexes, starts, ends = [], [], [] for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len: mask_idc = np.random.choice(mask_idc, min_len, replace=False) mask[i, mask_idc] = True vals, run_starts, run_lengths = find_runs(mask[i]) start_indices, lengths = run_starts[vals == True], run_lengths[vals == True] starts.append(start_indices) ends.append(start_indices+lengths) batch_indexes.append(np.zeros([len(start_indices)])+i) return mask, np.concatenate(starts).astype(np.int64), np.concatenate(ends).astype(np.int64), np.concatenate(batch_indexes).astype(np.int64) def find_runs(x): """Find runs of consecutive items in an array.""" # ensure array x = np.asanyarray(x) if x.ndim != 1: raise ValueError('only 1D array supported') n = x.shape[0] # handle empty array if n == 0: return np.array([]), np.array([]), np.array([]) else: # find run starts loc_run_start = np.empty(n, dtype=bool) loc_run_start[0] = True np.not_equal(x[:-1], x[1:], out=loc_run_start[1:]) run_starts = np.nonzero(loc_run_start)[0] # find run values run_values = x[loc_run_start] # find run lengths run_lengths = np.diff(np.append(run_starts, n)) return run_values, run_starts, run_lengths