import gradio as gr from gpt4all import GPT4All from huggingface_hub import hf_hub_download import faiss #from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEmbeddings import numpy as np from pypdf import PdfReader from gradio_pdf import PDF from pdf2image import convert_from_path from transformers import pipeline from pathlib import Path from langchain.vectorstores import Chroma title = "Mistral-7B-Instruct-GGUF Run On CPU-Basic Free Hardware" description = """ 🔎 [Mistral AI's Mistral 7B Instruct v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) [GGUF format model](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) , 4-bit quantization balanced quality gguf version, running on CPU. English Only (Also support other languages but the quality's not good). Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). 🔹 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. Mistral does not support system prompt symbol (such as ```<>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). """ """ [Model From TheBloke/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF) [Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing) """ model_path = "models" model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf" hf_hub_download(repo_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) print("Start the model init process") model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") model.config["promptTemplate"] = "[INST] {0} [/INST]" model.config["systemPrompt"] = "Tu es un assitant et tu dois rĂ©pondre en français" model._is_chat_session_activated = False max_new_tokens = 2048 model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} embeddings = HuggingFaceEmbeddings( model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) chunk_size = 2048 # creating a pdf reader object vectordb = Chroma( persist_directory="./resource/chroma/", embedding_function=embeddings ) print("Finish the model init process") def qa(question: str) -> str: docs = vectordb.max_marginal_relevance_search(question,k=3) # prompt = f"""[INST] # Les informations contextuelles sont ci-dessous. # --------------------- # {docs[0].page_content} # --------------------- # [/INST] # Compte tenu des informations contextuelles et non des connaissances prĂ©alables, rĂ©pondez Ă  la requĂȘte. # [INST] RequĂȘte: {question} [/INST] # RĂ©ponse: # """ #outputs = model.generate(prompt=prompt, temp=0.5, top_k = 40, top_p = 1, max_tokens = max_new_tokens) return docs[0].page_content #"".join(outputs) demo = gr.Interface( qa, [gr.Textbox(label="Question")#, PDF(label="Document") ], gr.Textbox() ) if __name__ == "__main__": demo.queue(max_size=3).launch()