import numpy as np import torch import torch.nn as nn import torch.nn.functional as F class VectorQuantizer(nn.Module): """ see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py ____________________________________________ Discretization bottleneck part of the VQ-VAE. Inputs: - n_e : number of embeddings - e_dim : dimension of embedding - beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 _____________________________________________ """ def __init__(self, n_e, e_dim, beta): super(VectorQuantizer, self).__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) def forward(self, z): """ Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width) quantization pipeline: 1. get encoder input (B,C,H,W) 2. flatten input to (B*H*W,C) """ # reshape z -> (batch, height, width, channel) and flatten z = z.permute(0, 2, 3, 1).contiguous() z_flattened = z.view(-1, self.e_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ torch.sum(self.embedding.weight**2, dim=1) - 2 * \ torch.matmul(z_flattened, self.embedding.weight.t()) ## could possible replace this here # #\start... # find closest encodings min_value, min_encoding_indices = torch.min(d, dim=1) min_encoding_indices = min_encoding_indices.unsqueeze(1) min_encodings = torch.zeros( min_encoding_indices.shape[0], self.n_e).to(z) min_encodings.scatter_(1, min_encoding_indices, 1) # dtype min encodings: torch.float32 # min_encodings shape: torch.Size([2048, 512]) # min_encoding_indices.shape: torch.Size([2048, 1]) # get quantized latent vectors z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) #.........\end # with: # .........\start #min_encoding_indices = torch.argmin(d, dim=1) #z_q = self.embedding(min_encoding_indices) # ......\end......... (TODO) # compute loss for embedding loss = torch.mean((z_q.detach()-z)**2) + self.beta * \ torch.mean((z_q - z.detach()) ** 2) # preserve gradients z_q = z + (z_q - z).detach() # perplexity e_mean = torch.mean(min_encodings, dim=0) perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d) def get_codebook_entry(self, indices, shape): # shape specifying (batch, height, width, channel) # TODO: check for more easy handling with nn.Embedding min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) min_encodings.scatter_(1, indices[:,None], 1) # get quantized latent vectors z_q = torch.matmul(min_encodings.float(), self.embedding.weight) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q # pytorch_diffusion + derived encoder decoder def nonlinearity(x): # swish return x*torch.sigmoid(x) def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0,1,0,1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x+h class MultiHeadAttnBlock(nn.Module): def __init__(self, in_channels, head_size=1): super().__init__() self.in_channels = in_channels self.head_size = head_size self.att_size = in_channels // head_size assert(in_channels % head_size == 0), 'The size of head should be divided by the number of channels.' self.norm1 = Normalize(in_channels) self.norm2 = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.num = 0 def forward(self, x, y=None): h_ = x h_ = self.norm1(h_) if y is None: y = h_ else: y = self.norm2(y) q = self.q(y) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = q.reshape(b, self.head_size, self.att_size ,h*w) q = q.permute(0, 3, 1, 2) # b, hw, head, att k = k.reshape(b, self.head_size, self.att_size ,h*w) k = k.permute(0, 3, 1, 2) v = v.reshape(b, self.head_size, self.att_size ,h*w) v = v.permute(0, 3, 1, 2) q = q.transpose(1, 2) v = v.transpose(1, 2) k = k.transpose(1, 2).transpose(2,3) scale = int(self.att_size)**(-0.5) q.mul_(scale) w_ = torch.matmul(q, k) w_ = F.softmax(w_, dim=3) w_ = w_.matmul(v) w_ = w_.transpose(1, 2).contiguous() # [b, h*w, head, att] w_ = w_.view(b, h, w, -1) w_ = w_.permute(0, 3, 1, 2) w_ = self.proj_out(w_) return x+w_ class MultiHeadEncoder(nn.Module): def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, attn_resolutions=[16], dropout=0.0, resamp_with_conv=True, in_channels=3, resolution=512, z_channels=256, double_z=True, enable_mid=True, head_size=1, **ignore_kwargs): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.enable_mid = enable_mid # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(MultiHeadAttnBlock(block_in, head_size)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle if self.enable_mid: self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2*z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): #assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) hs = {} # timestep embedding temb = None # downsampling h = self.conv_in(x) hs['in'] = h for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](h, temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) if i_level != self.num_resolutions-1: # hs.append(h) hs['block_'+str(i_level)] = h h = self.down[i_level].downsample(h) # middle # h = hs[-1] if self.enable_mid: h = self.mid.block_1(h, temb) hs['block_'+str(i_level)+'_atten'] = h h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) hs['mid_atten'] = h # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) # hs.append(h) hs['out'] = h return hs class MultiHeadDecoder(nn.Module): def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3, resolution=512, z_channels=256, give_pre_end=False, enable_mid=True, head_size=1, **ignorekwargs): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.enable_mid = enable_mid # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_resolutions-1] curr_res = resolution // 2**(self.num_resolutions-1) self.z_shape = (1,z_channels,curr_res,curr_res) print("Working with z of shape {} = {} dimensions.".format( self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle if self.enable_mid: self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(MultiHeadAttnBlock(block_in, head_size)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle if self.enable_mid: h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class MultiHeadDecoderTransformer(nn.Module): def __init__(self, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks=2, attn_resolutions=16, dropout=0.0, resamp_with_conv=True, in_channels=3, resolution=512, z_channels=256, give_pre_end=False, enable_mid=True, head_size=1, **ignorekwargs): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.enable_mid = enable_mid # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_resolutions-1] curr_res = resolution // 2**(self.num_resolutions-1) self.z_shape = (1,z_channels,curr_res,curr_res) print("Working with z of shape {} = {} dimensions.".format( self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle if self.enable_mid: self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(MultiHeadAttnBlock(block_in, head_size)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z, hs): #assert z.shape[1:] == self.z_shape[1:] # self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle if self.enable_mid: h = self.mid.block_1(h, temb) h = self.mid.attn_1(h, hs['mid_atten']) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: if 'block_'+str(i_level)+'_atten' in hs: h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)+'_atten']) else: h = self.up[i_level].attn[i_block](h, hs['block_'+str(i_level)]) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class VQVAEGAN(nn.Module): def __init__(self, n_embed=1024, embed_dim=256, ch=128, out_ch=3, ch_mult=(1,2,4,8), num_res_blocks=2, attn_resolutions=16, dropout=0.0, in_channels=3, resolution=512, z_channels=256, double_z=False, enable_mid=True, fix_decoder=False, fix_codebook=False, head_size=1, **ignore_kwargs): super(VQVAEGAN, self).__init__() self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, resolution=resolution, z_channels=z_channels, double_z=double_z, enable_mid=enable_mid, head_size=head_size) self.decoder = MultiHeadDecoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) if fix_decoder: for _, param in self.decoder.named_parameters(): param.requires_grad = False for _, param in self.post_quant_conv.named_parameters(): param.requires_grad = False for _, param in self.quantize.named_parameters(): param.requires_grad = False elif fix_codebook: for _, param in self.quantize.named_parameters(): param.requires_grad = False def encode(self, x): hs = self.encoder(x) h = self.quant_conv(hs['out']) quant, emb_loss, info = self.quantize(h) return quant, emb_loss, info, hs def decode(self, quant): quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec def forward(self, input): quant, diff, info, hs = self.encode(input) dec = self.decode(quant) return dec, diff, info, hs class VQVAEGANMultiHeadTransformer(nn.Module): def __init__(self, n_embed=1024, embed_dim=256, ch=64, out_ch=3, ch_mult=(1, 2, 2, 4, 4, 8), num_res_blocks=2, attn_resolutions=(16, ), dropout=0.0, in_channels=3, resolution=512, z_channels=256, double_z=False, enable_mid=True, fix_decoder=False, fix_codebook=True, fix_encoder=False, head_size=4, ex_multi_scale_num=1): super(VQVAEGANMultiHeadTransformer, self).__init__() self.encoder = MultiHeadEncoder(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, resolution=resolution, z_channels=z_channels, double_z=double_z, enable_mid=enable_mid, head_size=head_size) for i in range(ex_multi_scale_num): attn_resolutions = [attn_resolutions[0], attn_resolutions[-1]*2] self.decoder = MultiHeadDecoderTransformer(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, in_channels=in_channels, resolution=resolution, z_channels=z_channels, enable_mid=enable_mid, head_size=head_size) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) if fix_decoder: for _, param in self.decoder.named_parameters(): param.requires_grad = False for _, param in self.post_quant_conv.named_parameters(): param.requires_grad = False for _, param in self.quantize.named_parameters(): param.requires_grad = False elif fix_codebook: for _, param in self.quantize.named_parameters(): param.requires_grad = False if fix_encoder: for _, param in self.encoder.named_parameters(): param.requires_grad = False for _, param in self.quant_conv.named_parameters(): param.requires_grad = False def encode(self, x): hs = self.encoder(x) h = self.quant_conv(hs['out']) quant, emb_loss, info = self.quantize(h) return quant, emb_loss, info, hs def decode(self, quant, hs): quant = self.post_quant_conv(quant) dec = self.decoder(quant, hs) return dec def forward(self, input): quant, diff, info, hs = self.encode(input) dec = self.decode(quant, hs) return dec, diff, info, hs