import spaces
import argparse
import os
import json
import torch
import sys
import time
import importlib
import numpy as np
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download

from collections import OrderedDict
import trimesh
import gradio as gr
from typing import Any

proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.join(proj_dir))

import tempfile

from apps.utils import *

_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
_DESCRIPTION = '''
<div>
Select or upload a image, then just click 'Generate'. 
<br>
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka 匠心) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes,
then a multi-view normal enhanced image generation model is used to refine the mesh.
We provide the coarse 3D diffusion part here. 
<br>
If you found CraftsMan is helpful, please help to ⭐ the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks!
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a>
<br>
*If you have your own multi-view images, you can directly upload it.
</div>
'''
_CITE_ = r"""
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{craftsman,
author    = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
title     = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
journal   = {arxiv:xxx},
year      = {2024},
}
```
🤗 **Acknowledgements**
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
📋 **License**
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
"""
from apps.third_party.CRM.pipelines import TwoStagePipeline
from apps.third_party.LGM.pipeline_mvdream import MVDreamPipeline


model = None
cached_dir = None
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
stage1_sampler_config = stage1_config.sampler
stage1_model_config = stage1_config.models
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
crm_pipeline = None

sys.path.append(f"apps/third_party/LGM")
imgaedream_pipeline = None

generator = None

@spaces.GPU
def gen_mvimg(
    mvimg_model, image, seed, guidance_scale, step, text, neg_text, elevation, 
):
    if seed == 0:
        seed = np.random.randint(1, 65535)

    if mvimg_model == "CRM":
        global crm_pipeline
        crm_pipeline.set_seed(seed)
        mv_imgs = crm_pipeline(
            image, 
            scale=guidance_scale, 
            step=step
        )["stage1_images"]
        return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
    
    elif mvimg_model == "ImageDream":
        global imagedream_pipeline, generator
        image = np.array(image).astype(np.float32) / 255.0
        image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
        mv_imgs = imagedream_pipeline(
            text, 
            image, 
            negative_prompt=neg_text, 
            guidance_scale=guidance_scale,  
            num_inference_steps=step, 
            elevation=elevation,
            generator=generator.manual_seed(seed),
        )
        return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
    

@spaces.GPU
def image2mesh(view_front: np.ndarray, 
               view_right: np.ndarray, 
               view_back: np.ndarray, 
               view_left: np.ndarray,
               more: bool = False,
               scheluder_name: str ="DDIMScheduler",
               guidance_scale: int = 7.5,
               seed: int = 4,
               octree_depth: int = 7):
    
    sample_inputs = {
        "mvimages": [[
            Image.fromarray(view_front), 
            Image.fromarray(view_right), 
            Image.fromarray(view_back), 
            Image.fromarray(view_left)
        ]]
    }

    global model
    latents = model.sample(
        sample_inputs,
        sample_times=1,
        guidance_scale=guidance_scale,
        return_intermediates=False,
        seed=seed
       
    )[0]
    
    # decode the latents to mesh
    box_v = 1.1
    mesh_outputs, _ = model.shape_model.extract_geometry(
        latents,
        bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
        octree_depth=octree_depth
    )
    assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
    mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
    # filepath = f"{cached_dir}/{time.time()}.obj"
    filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
    mesh.export(filepath, include_normals=True)

    if 'Remesh' in more:
        remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
        print("Remeshing with Instant Meshes...")
        # target_face_count = int(len(mesh.faces)/10)
        target_face_count = 2000
        command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}"
        os.system(command)
        filepath = remeshed_filepath
        # filepath = filepath.replace('.obj', '_remeshed.obj')
    
    return filepath

if __name__=="__main__":
    parser = argparse.ArgumentParser()
    # parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",)
    parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir")
    parser.add_argument("--device", type=int, default=0)
    args = parser.parse_args()

    cached_dir = args.cached_dir
    os.makedirs(args.cached_dir, exist_ok=True)
    device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
    print(f"using device: {device}")

    # for multi-view images generation
    background_choice = OrderedDict({ 
        "Alpha as Mask": "Alpha as Mask",
        "Auto Remove Background": "Auto Remove Background",
        "Original Image": "Original Image",        
    })
    mvimg_model_config_list = ["CRM", "ImageDream"]
    crm_pipeline = TwoStagePipeline(
                        stage1_model_config,
                        stage1_sampler_config,
                        device=device,
                        dtype=torch.float16
                    )
    imagedream_pipeline = MVDreamPipeline.from_pretrained(
        "ashawkey/imagedream-ipmv-diffusers", # remote weights
        torch_dtype=torch.float16,
        trust_remote_code=True,
    )
    generator = torch.Generator(device)


    # for 3D latent set diffusion
    ckpt_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt"
    config_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml"
    # ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")
    # config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model")
    scheluder_dict = OrderedDict({ 
        "DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
        # "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
        # "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet
    })
    
    # main GUI
    custom_theme = gr.themes.Soft(primary_hue="blue").set(
                    button_secondary_background_fill="*neutral_100",
                    button_secondary_background_fill_hover="*neutral_200")
    custom_css = '''#disp_image {
        text-align: center; /* Horizontally center the content */
    }'''
    
    with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)

        with gr.Row():
            with gr.Column(scale=2):
                with gr.Column():
                    # input image
                    with gr.Row():
                        image_input = gr.Image(
                            label="Image Input",
                            image_mode="RGBA",
                            sources="upload",
                            type="pil",
                        )
                run_btn = gr.Button('Generate', variant='primary', interactive=True)

                with gr.Row():
                    gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''')
                with gr.Row():
                    seed = gr.Number(0, label='Seed', show_label=True)
                    mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=list(mvimg_model_config_list))
                    more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False)
                with gr.Row():
                    # input prompt
                    text = gr.Textbox(label="Prompt (Opt.)", info="only works for ImageDream")

                with gr.Accordion('Advanced options', open=False):
                    # negative prompt
                    neg_text = gr.Textbox(label="Negative Prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
                    # elevation
                    elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)

                with gr.Row():
                    gr.Examples(
                        examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
                        inputs=[image_input],
                        examples_per_page=8
                    )

            with gr.Column(scale=4):
                with gr.Row():
                    output_model_obj = gr.Model3D(
                        label="Output Model (OBJ Format)",
                        camera_position=(90.0, 90.0, 3.5),
                        interactive=False,
                    )
                with gr.Row():
                    gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''')
                    
                with gr.Row():
                    view_front = gr.Image(label="Front", interactive=True, show_label=True)
                    view_right = gr.Image(label="Right", interactive=True, show_label=True)
                    view_back = gr.Image(label="Back", interactive=True, show_label=True)
                    view_left = gr.Image(label="Left", interactive=True, show_label=True)
                    
                with gr.Accordion('Advanced options', open=False):
                    with gr.Row(equal_height=True):
                        run_mv_btn = gr.Button('Only Generate 2D', interactive=True)
                        run_3d_btn = gr.Button('Only Generate 3D', interactive=True)

                with gr.Accordion('Advanced options (2D)', open=False):
                    with gr.Row():
                        foreground_ratio = gr.Slider(
                                label="Foreground Ratio",
                                minimum=0.5,
                                maximum=1.0,
                                value=1.0,
                                step=0.05,
                            )
                        
                    with gr.Row():
                        background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
                        rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
                        backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True)
                        # backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True)
                        
                    with gr.Row():
                        mvimg_guidance_scale = gr.Number(value=4.0, minimum=3, maximum=10, label="2D Guidance Scale")
                        mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps")
            
                with gr.Accordion('Advanced options (3D)', open=False):
                    with gr.Row():
                        guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0)
                        steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps")
                        
                    with gr.Row():
                        scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
                        octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
                    
        gr.Markdown(_CITE_)

        outputs = [output_model_obj]
        rmbg = RMBG(device)
        
        model = load_model(ckpt_path, config_path, device)

        run_btn.click(fn=check_input_image, inputs=[image_input]
                    ).success(
                            fn=rmbg.run, 
                            inputs=[rmbg_type, image_input, foreground_ratio, background_choice, backgroud_color],
                            outputs=[image_input]
                    ).success(
                            fn=gen_mvimg,
                            inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation],
                            outputs=[view_front, view_right, view_back, view_left]
                    ).success(
                            fn=image2mesh, 
                            inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
                            outputs=outputs, 
                            api_name="generate_img2obj")
        run_mv_btn.click(fn=gen_mvimg,
                        inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation],
                        outputs=[view_front, view_right, view_back, view_left]
        )
        run_3d_btn.click(fn=image2mesh, 
                        inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth],
                        outputs=outputs, 
                        api_name="generate_img2obj")
        
        demo.queue().launch(share=True, allowed_paths=[args.cached_dir])