from dataclasses import dataclass import torch import torch.nn as nn from craftsman.utils.config import parse_structured from craftsman.utils.misc import get_device, load_module_weights from craftsman.utils.typing import * class Configurable: @dataclass class Config: pass def __init__(self, cfg: Optional[dict] = None) -> None: super().__init__() self.cfg = parse_structured(self.Config, cfg) class Updateable: def do_update_step( self, epoch: int, global_step: int, on_load_weights: bool = False ): for attr in self.__dir__(): if attr.startswith("_"): continue try: module = getattr(self, attr) except: continue # ignore attributes like property, which can't be retrived using getattr? if isinstance(module, Updateable): module.do_update_step( epoch, global_step, on_load_weights=on_load_weights ) self.update_step(epoch, global_step, on_load_weights=on_load_weights) def do_update_step_end(self, epoch: int, global_step: int): for attr in self.__dir__(): if attr.startswith("_"): continue try: module = getattr(self, attr) except: continue # ignore attributes like property, which can't be retrived using getattr? if isinstance(module, Updateable): module.do_update_step_end(epoch, global_step) self.update_step_end(epoch, global_step) def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): # override this method to implement custom update logic # if on_load_weights is True, you should be careful doing things related to model evaluations, # as the models and tensors are not guarenteed to be on the same device pass def update_step_end(self, epoch: int, global_step: int): pass def update_if_possible(module: Any, epoch: int, global_step: int) -> None: if isinstance(module, Updateable): module.do_update_step(epoch, global_step) def update_end_if_possible(module: Any, epoch: int, global_step: int) -> None: if isinstance(module, Updateable): module.do_update_step_end(epoch, global_step) class BaseObject(Updateable): @dataclass class Config: pass cfg: Config # add this to every subclass of BaseObject to enable static type checking def __init__( self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs ) -> None: super().__init__() self.cfg = parse_structured(self.Config, cfg) self.device = get_device() self.configure(*args, **kwargs) def configure(self, *args, **kwargs) -> None: pass class BaseModule(nn.Module, Updateable): @dataclass class Config: weights: Optional[str] = None cfg: Config # add this to every subclass of BaseModule to enable static type checking def __init__( self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs ) -> None: super().__init__() self.cfg = parse_structured(self.Config, cfg) self.device = get_device() self.configure(*args, **kwargs) if self.cfg.weights is not None: # format: path/to/weights:module_name weights_path, module_name = self.cfg.weights.split(":") state_dict, epoch, global_step = load_module_weights( weights_path, module_name=module_name, map_location="cpu" ) self.load_state_dict(state_dict) self.do_update_step( epoch, global_step, on_load_weights=True ) # restore states # dummy tensor to indicate model state self._dummy: Float[Tensor, "..."] self.register_buffer("_dummy", torch.zeros(0).float(), persistent=False) def configure(self, *args, **kwargs) -> None: pass