from dataclasses import dataclass import torch import torch.nn as nn from torch import distributed as tdist from torch.nn import functional as F import math import mcubes import numpy as np from einops import repeat, rearrange from skimage import measure from craftsman.utils.base import BaseModule from craftsman.utils.typing import * from craftsman.utils.misc import get_world_size from craftsman.utils.ops import generate_dense_grid_points VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"] class FourierEmbedder(nn.Module): def __init__(self, num_freqs: int = 6, logspace: bool = True, input_dim: int = 3, include_input: bool = True, include_pi: bool = True) -> None: super().__init__() if logspace: frequencies = 2.0 ** torch.arange( num_freqs, dtype=torch.float32 ) else: frequencies = torch.linspace( 1.0, 2.0 ** (num_freqs - 1), num_freqs, dtype=torch.float32 ) if include_pi: frequencies *= torch.pi self.register_buffer("frequencies", frequencies, persistent=False) self.include_input = include_input self.num_freqs = num_freqs self.out_dim = self.get_dims(input_dim) def get_dims(self, input_dim): temp = 1 if self.include_input or self.num_freqs == 0 else 0 out_dim = input_dim * (self.num_freqs * 2 + temp) return out_dim def forward(self, x: torch.Tensor) -> torch.Tensor: if self.num_freqs > 0: embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1) if self.include_input: return torch.cat((x, embed.sin(), embed.cos()), dim=-1) else: return torch.cat((embed.sin(), embed.cos()), dim=-1) else: return x class LearnedFourierEmbedder(nn.Module): def __init__(self, input_dim, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 per_channel_dim = half_dim // input_dim self.weights = nn.Parameter(torch.randn(per_channel_dim)) self.out_dim = self.get_dims(input_dim) def forward(self, x): # [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d] freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1) fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1) return fouriered def get_dims(self, input_dim): return input_dim * (self.weights.shape[0] * 2 + 1) class Sine(nn.Module): def __init__(self, w0 = 1.): super().__init__() self.w0 = w0 def forward(self, x): return torch.sin(self.w0 * x) class Siren(nn.Module): def __init__( self, in_dim, out_dim, w0 = 1., c = 6., is_first = False, use_bias = True, activation = None, dropout = 0. ): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.is_first = is_first weight = torch.zeros(out_dim, in_dim) bias = torch.zeros(out_dim) if use_bias else None self.init_(weight, bias, c = c, w0 = w0) self.weight = nn.Parameter(weight) self.bias = nn.Parameter(bias) if use_bias else None self.activation = Sine(w0) if activation is None else activation self.dropout = nn.Dropout(dropout) def init_(self, weight, bias, c, w0): dim = self.in_dim w_std = (1 / dim) if self.is_first else (math.sqrt(c / dim) / w0) weight.uniform_(-w_std, w_std) if bias is not None: bias.uniform_(-w_std, w_std) def forward(self, x): out = F.linear(x, self.weight, self.bias) out = self.activation(out) out = self.dropout(out) return out def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, include_pi=True): if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1): return nn.Identity(), input_dim elif embed_type == "fourier": embedder_obj = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi) elif embed_type == "learned_fourier": embedder_obj = LearnedFourierEmbedder(in_channels=input_dim, dim=num_freqs) elif embed_type == "siren": embedder_obj = Siren(in_dim=input_dim, out_dim=num_freqs * input_dim * 2 + input_dim) elif embed_type == "hashgrid": raise NotImplementedError elif embed_type == "sphere_harmonic": raise NotImplementedError else: raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}") return embedder_obj ###################### AutoEncoder class AutoEncoder(BaseModule): @dataclass class Config(BaseModule.Config): pretrained_model_name_or_path: str = "" num_latents: int = 256 embed_dim: int = 64 width: int = 768 cfg: Config def configure(self) -> None: super().configure() def encode(self, x: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]: raise NotImplementedError def decode(self, z: torch.FloatTensor) -> torch.FloatTensor: raise NotImplementedError def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True): posterior = None if self.cfg.embed_dim > 0: moments = self.pre_kl(latents) posterior = DiagonalGaussianDistribution(moments, feat_dim=-1) if sample_posterior: kl_embed = posterior.sample() else: kl_embed = posterior.mode() else: kl_embed = latents return kl_embed, posterior def forward(self, surface: torch.FloatTensor, queries: torch.FloatTensor, sample_posterior: bool = True): shape_latents, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior) latents = self.decode(kl_embed) # [B, num_latents, width] logits = self.query(queries, latents) # [B,] return shape_latents, latents, posterior, logits def query(self, queries: torch.FloatTensor, latents: torch.FloatTensor) -> torch.FloatTensor: raise NotImplementedError @torch.no_grad() def extract_geometry(self, latents: torch.FloatTensor, bounds: Union[Tuple[float], List[float], float] = (-1.05, -1.05, -1.05, 1.05, 1.05, 1.05), octree_depth: int = 8, num_chunks: int = 10000, ): if isinstance(bounds, float): bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] bbox_min = np.array(bounds[0:3]) bbox_max = np.array(bounds[3:6]) bbox_size = bbox_max - bbox_min xyz_samples, grid_size, length = generate_dense_grid_points( bbox_min=bbox_min, bbox_max=bbox_max, octree_depth=octree_depth, indexing="ij" ) xyz_samples = torch.FloatTensor(xyz_samples) batch_size = latents.shape[0] batch_logits = [] for start in range(0, xyz_samples.shape[0], num_chunks): queries = xyz_samples[start: start + num_chunks, :].to(latents) batch_queries = repeat(queries, "p c -> b p c", b=batch_size) logits = self.query(batch_queries, latents) batch_logits.append(logits.cpu()) grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float().numpy() mesh_v_f = [] has_surface = np.zeros((batch_size,), dtype=np.bool_) for i in range(batch_size): try: vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner") # vertices, faces = mcubes.marching_cubes(grid_logits[i], 0) vertices = vertices / grid_size * bbox_size + bbox_min faces = faces[:, [2, 1, 0]] mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces))) has_surface[i] = True except: mesh_v_f.append((None, None)) has_surface[i] = False return mesh_v_f, has_surface class DiagonalGaussianDistribution(object): def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1): self.feat_dim = feat_dim self.parameters = parameters if isinstance(parameters, list): self.mean = parameters[0] self.logvar = parameters[1] else: self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean) def sample(self): x = self.mean + self.std * torch.randn_like(self.mean) return x def kl(self, other=None, dims=(1, 2)): if self.deterministic: return torch.Tensor([0.]) else: if other is None: return 0.5 * torch.mean(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=dims) else: return 0.5 * torch.mean( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=dims) def nll(self, sample, dims=(1, 2)): if self.deterministic: return torch.Tensor([0.]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum( logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean