from dataclasses import dataclass, field import numpy as np import json import copy import torch import torch.nn.functional as F from skimage import measure from einops import repeat from tqdm import tqdm from PIL import Image from diffusers import ( DDPMScheduler, DDIMScheduler, UniPCMultistepScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler ) import craftsman from craftsman.systems.base import BaseSystem from craftsman.utils.ops import generate_dense_grid_points from craftsman.utils.misc import get_rank from craftsman.utils.typing import * def compute_snr(noise_scheduler, timesteps): """ Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 """ alphas_cumprod = noise_scheduler.alphas_cumprod sqrt_alphas_cumprod = alphas_cumprod**0.5 sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 # Expand the tensors. # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] alpha = sqrt_alphas_cumprod.expand(timesteps.shape) sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) # Compute SNR. snr = (alpha / sigma) ** 2 return snr def ddim_sample(ddim_scheduler: DDIMScheduler, diffusion_model: torch.nn.Module, shape: Union[List[int], Tuple[int]], cond: torch.FloatTensor, steps: int, eta: float = 0.0, guidance_scale: float = 3.0, do_classifier_free_guidance: bool = True, generator: Optional[torch.Generator] = None, device: torch.device = "cuda:0", disable_prog: bool = True): assert steps > 0, f"{steps} must > 0." # init latents bsz = cond.shape[0] if do_classifier_free_guidance: bsz = bsz // 2 latents = torch.randn( (bsz, *shape), generator=generator, device=cond.device, dtype=cond.dtype, ) # scale the initial noise by the standard deviation required by the scheduler latents = latents * ddim_scheduler.init_noise_sigma # set timesteps ddim_scheduler.set_timesteps(steps) timesteps = ddim_scheduler.timesteps.to(device) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, and between [0, 1] extra_step_kwargs = { # "eta": eta, "generator": generator } # reverse for i, t in enumerate(tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)): # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * 2) if do_classifier_free_guidance else latents ) # predict the noise residual timestep_tensor = torch.tensor([t], dtype=torch.long, device=device) timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0]) noise_pred = diffusion_model.forward(latent_model_input, timestep_tensor, cond) # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # compute the previous noisy sample x_t -> x_t-1 latents = ddim_scheduler.step( noise_pred, t, latents, **extra_step_kwargs ).prev_sample yield latents, t @craftsman.register("shape-diffusion-system") class ShapeDiffusionSystem(BaseSystem): @dataclass class Config(BaseSystem.Config): val_samples_json: str = None z_scale_factor: float = 1.0 guidance_scale: float = 7.5 num_inference_steps: int = 50 eta: float = 0.0 snr_gamma: float = 5.0 # shape vae model shape_model_type: str = None shape_model: dict = field(default_factory=dict) # condition model condition_model_type: str = None condition_model: dict = field(default_factory=dict) # diffusion model denoiser_model_type: str = None denoiser_model: dict = field(default_factory=dict) # noise scheduler noise_scheduler_type: str = None noise_scheduler: dict = field(default_factory=dict) # denoise scheduler denoise_scheduler_type: str = None denoise_scheduler: dict = field(default_factory=dict) cfg: Config def configure(self): super().configure() self.shape_model = craftsman.find(self.cfg.shape_model_type)(self.cfg.shape_model) self.shape_model.eval() self.shape_model.requires_grad_(False) self.condition = craftsman.find(self.cfg.condition_model_type)(self.cfg.condition_model) self.denoiser_model = craftsman.find(self.cfg.denoiser_model_type)(self.cfg.denoiser_model) self.noise_scheduler = craftsman.find(self.cfg.noise_scheduler_type)(**self.cfg.noise_scheduler) self.denoise_scheduler = craftsman.find(self.cfg.denoise_scheduler_type)(**self.cfg.denoise_scheduler) self.z_scale_factor = self.cfg.z_scale_factor def forward(self, batch: Dict[str, Any]): # encode shape latents shape_embeds, kl_embed, posterior = self.shape_model.encode( batch["surface"][..., :3 + self.cfg.shape_model.point_feats], sample_posterior=True ) latents = kl_embed * self.z_scale_factor cond_latents = self.condition(batch) cond_latents = cond_latents.to(latents).view(latents.shape[0], -1, cond_latents.shape[-1]) # Sample noise that we"ll add to the latents # [batch_size, n_token, latent_dim] noise = torch.randn_like(latents).to(latents) bs = latents.shape[0] # Sample a random timestep for each motion timesteps = torch.randint( 0, self.noise_scheduler.config.num_train_timesteps, (bs,), device=latents.device, ) # import pdb; pdb.set_trace() timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # x_t noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps) # diffusion model forward noise_pred = self.denoiser_model(noisy_z, timesteps, cond_latents) # compute loss if self.noise_scheduler.config.prediction_type == "epsilon": target = noise elif self.noise_scheduler.config.prediction_type == "v_prediction": target = self.noise_scheduler.get_velocity(latents, noise, timesteps) else: raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.") if self.cfg.snr_gamma == 0: if self.cfg.loss.loss_type == "l1": loss = F.l1_loss(noise_pred, target, reduction="mean") elif self.cfg.loss.loss_type in ["mse", "l2"]: loss = F.mse_loss(noise_pred, target, reduction="mean") else: raise NotImplementedError(f"Loss Type: {self.cfg.loss.loss_type} not yet supported.") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. snr = compute_snr(self.noise_scheduler, timesteps) mse_loss_weights = torch.stack([snr, self.cfg.snr_gamma * torch.ones_like(timesteps)], dim=1).min( dim=1 )[0] if self.noise_scheduler.config.prediction_type == "epsilon": mse_loss_weights = mse_loss_weights / snr elif noise_scheduler.config.prediction_type == "v_prediction": mse_loss_weights = mse_loss_weights / (snr + 1) if self.cfg.loss.loss_type == "l1": loss = F.l1_loss(noise_pred, target, reduction="none") elif self.cfg.loss.loss_type in ["mse", "l2"]: loss = F.mse_loss(noise_pred, target, reduction="none") else: raise NotImplementedError(f"Loss Type: {self.cfg.loss.loss_type} not yet supported.") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() return { "loss_diffusion": loss, "latents": latents, "x_0": noisy_z, "noise": noise, "noise_pred": noise_pred, "timesteps": timesteps, } def training_step(self, batch, batch_idx): out = self(batch) loss = 0. for name, value in out.items(): if name.startswith("loss_"): self.log(f"train/{name}", value) loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) for name, value in self.cfg.loss.items(): if name.startswith("lambda_"): self.log(f"train_params/{name}", self.C(value)) return {"loss": loss} @torch.no_grad() def validation_step(self, batch, batch_idx): self.eval() if get_rank() == 0: sample_inputs = json.loads(open(self.cfg.val_samples_json).read()) # condition sample_inputs_ = copy.deepcopy(sample_inputs) sample_outputs = self.sample(sample_inputs) # list for i, sample_output in enumerate(sample_outputs): mesh_v_f, has_surface = self.shape_model.extract_geometry(sample_output, octree_depth=7) for j in range(len(mesh_v_f)): if "text" in sample_inputs_ and "image" in sample_inputs_: name = sample_inputs_["image"][j].split("/")[-1].replace(".png", "") elif "text" in sample_inputs_ and "mvimage" in sample_inputs_: name = sample_inputs_["mvimages"][j][0].split("/")[-2].replace(".png", "") elif "text" in sample_inputs_: name = sample_inputs_["text"][j].replace(" ", "_") elif "image" in sample_inputs_: name = sample_inputs_["image"][j].split("/")[-1].replace(".png", "") elif "mvimages" in sample_inputs_: name = sample_inputs_["mvimages"][j][0].split("/")[-2].replace(".png", "") self.save_mesh( f"it{self.true_global_step}/{name}_{i}.obj", mesh_v_f[j][0], mesh_v_f[j][1] ) out = self(batch) if self.global_step == 0: latents = self.shape_model.decode(out["latents"]) mesh_v_f, has_surface = self.shape_model.extract_geometry(latents) self.save_mesh( f"it{self.true_global_step}/{batch['uid'][0]}_{batch['sel_idx'][0] if 'sel_idx' in batch.keys() else 0}.obj", mesh_v_f[0][0], mesh_v_f[0][1] ) # exit() torch.cuda.empty_cache() return {"val/loss": out["loss_diffusion"]} @torch.no_grad() def sample(self, sample_inputs: Dict[str, Union[torch.FloatTensor, List[str]]], sample_times: int = 1, steps: Optional[int] = None, guidance_scale: Optional[float] = None, eta: float = 0.0, return_intermediates: bool = False, camera_embeds: Optional[torch.Tensor] = None, seed: Optional[int] = None, **kwargs): if steps is None: steps = self.cfg.num_inference_steps if guidance_scale is None: guidance_scale = self.cfg.guidance_scale do_classifier_free_guidance = guidance_scale > 0 # conditional encode if "image" in sample_inputs: sample_inputs["image"] = [Image.open(img) for img in sample_inputs["image"]] cond = self.condition.encode_image(sample_inputs["image"]) if do_classifier_free_guidance: un_cond = self.condition.empty_image_embeds.repeat(len(sample_inputs["image"]), 1, 1).to(cond) cond = torch.cat([un_cond, cond], dim=0) elif "mvimages" in sample_inputs: # by default 4 views bs = len(sample_inputs["mvimages"]) cond = [] for image in sample_inputs["mvimages"]: if isinstance(image, list) and isinstance(image[0], str): sample_inputs["image"] = [Image.open(img) for img in image] # List[PIL] else: sample_inputs["image"] = image cond += [self.condition.encode_image(sample_inputs["image"])] cond = torch.stack(cond, dim=0)# tensor shape 为[len(sample_inputs["mvimages"], 4*(num_latents+1), context_dim] if do_classifier_free_guidance: un_cond = self.condition.empty_image_embeds.unsqueeze(0).repeat(len(sample_inputs["mvimages"]), cond.shape[1] // self.condition.cfg.n_views, 1, 1).to(cond) # shape 为[len(sample_inputs["mvimages"], 4*(num_latents+1), context_dim] cond = torch.cat([un_cond, cond], dim=0).view(bs * 2, -1, cond[0].shape[-1]) else: raise NotImplementedError("Only text, image or mvimages condition is supported.") outputs = [] latents = None if seed != None: generator = torch.Generator(device="cuda").manual_seed(seed) else: generator = None if not return_intermediates: for _ in range(sample_times): sample_loop = ddim_sample( self.denoise_scheduler, self.denoiser_model.eval(), shape=self.shape_model.latent_shape, cond=cond, steps=steps, guidance_scale=guidance_scale, do_classifier_free_guidance=do_classifier_free_guidance, device=self.device, eta=eta, disable_prog=False, generator= generator ) for sample, t in sample_loop: latents = sample outputs.append(self.shape_model.decode(latents / self.z_scale_factor, **kwargs)) else: sample_loop = ddim_sample( self.denoise_scheduler, self.denoiser_model.eval(), shape=self.shape_model.latent_shape, cond=cond, steps=steps, guidance_scale=guidance_scale, do_classifier_free_guidance=do_classifier_free_guidance, device=self.device, eta=eta, disable_prog=False, generator= generator ) iter_size = steps // sample_times i = 0 for sample, t in sample_loop: latents = sample if i % iter_size == 0 or i == steps - 1: outputs.append(self.shape_model.decode(latents / self.z_scale_factor, **kwargs)) i += 1 return outputs def on_validation_epoch_end(self): pass