import numpy as np import torch from imagedream.camera_utils import get_camera_for_index from imagedream.ldm.util import set_seed, add_random_background # import os # import sys # proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # sys.path.append(proj_dir) from apps.third_party.CRM.libs.base_utils import do_resize_content from imagedream.ldm.models.diffusion.ddim import DDIMSampler from torchvision import transforms as T class ImageDreamDiffusion: def __init__( self, model, device, dtype, mode, num_frames, camera_views, ref_position, random_background=False, offset_noise=False, resize_rate=1, image_size=256, seed=1234, ) -> None: assert mode in ["pixel", "local"] size = image_size self.seed = seed batch_size = max(4, num_frames) neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear." uc = model.get_learned_conditioning([neg_texts]).to(device) sampler = DDIMSampler(model) # pre-compute camera matrices camera = [get_camera_for_index(i).squeeze() for i in camera_views] camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero camera = torch.stack(camera) camera = camera.repeat(batch_size // num_frames, 1).to(device) self.image_transform = T.Compose( [ T.Resize((size, size)), T.ToTensor(), T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) self.dtype = dtype self.ref_position = ref_position self.mode = mode self.random_background = random_background self.resize_rate = resize_rate self.num_frames = num_frames self.size = size self.device = device self.batch_size = batch_size self.model = model self.sampler = sampler self.uc = uc self.camera = camera self.offset_noise = offset_noise @staticmethod def i2i( model, image_size, prompt, uc, sampler, ip=None, step=20, scale=5.0, batch_size=8, ddim_eta=0.0, dtype=torch.float32, device="cuda", camera=None, num_frames=4, pixel_control=False, transform=None, offset_noise=False, ): """ The function supports additional image prompt. Args: model (_type_): the image dream model image_size (_type_): size of diffusion output (standard 256) prompt (_type_): text prompt for the image (prompt in type str) uc (_type_): unconditional vector (tensor in shape [1, 77, 1024]) sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler ip (Image, optional): the image prompt. Defaults to None. step (int, optional): _description_. Defaults to 20. scale (float, optional): _description_. Defaults to 7.5. batch_size (int, optional): _description_. Defaults to 8. ddim_eta (float, optional): _description_. Defaults to 0.0. dtype (_type_, optional): _description_. Defaults to torch.float32. device (str, optional): _description_. Defaults to "cuda". camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00 num_frames (int, optional): _num of frames (views) to generate pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode transform: Compose( Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn) ToTensor() Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ) """ ip_raw = ip if type(prompt) != list: prompt = [prompt] with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype): c = model.get_learned_conditioning(prompt).to( device ) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05 c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size uc_ = {"context": uc.repeat(batch_size, 1, 1)} if camera is not None: c_["camera"] = uc_["camera"] = ( camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00 ) c_["num_frames"] = uc_["num_frames"] = num_frames if ip is not None: ip_embed = model.get_learned_image_conditioning(ip).to( device ) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12 ip_ = ip_embed.repeat(batch_size, 1, 1) c_["ip"] = ip_ uc_["ip"] = torch.zeros_like(ip_) if pixel_control: assert camera is not None ip = transform(ip).to( device ) # shape: torch.Size([3, 256, 256]) mean: 0.33, std: 0.37, min: -1.00, max: 1.00 ip_img = model.get_first_stage_encoding( model.encode_first_stage(ip[None, :, :, :]) ) # shape: torch.Size([1, 4, 32, 32]) mean: 0.23, std: 0.77, min: -4.42, max: 3.55 c_["ip_img"] = ip_img uc_["ip_img"] = torch.zeros_like(ip_img) shape = [4, image_size // 8, image_size // 8] # [4, 32, 32] if offset_noise: ref = transform(ip_raw).to(device) ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :])) ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True) time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device) x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps) samples_ddim, _ = ( sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43 S=step, conditioning=c_, batch_size=batch_size, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc_, eta=ddim_eta, x_T=x_T if offset_noise else None, ) ) x_sample = model.decode_first_stage(samples_ddim) x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy() return list(x_sample.astype(np.uint8)) def diffuse(self, t, ip, n_test=2): set_seed(self.seed) ip = do_resize_content(ip, self.resize_rate) if self.random_background: ip = add_random_background(ip) images = [] for _ in range(n_test): img = self.i2i( self.model, self.size, t, self.uc, self.sampler, ip=ip, step=50, scale=5, batch_size=self.batch_size, ddim_eta=0.0, dtype=self.dtype, device=self.device, camera=self.camera, num_frames=self.num_frames, pixel_control=(self.mode == "pixel"), transform=self.image_transform, offset_noise=self.offset_noise, ) img = np.concatenate(img, 1) img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1) images.append(img) set_seed() # unset random and numpy seed return images class ImageDreamDiffusionStage2: def __init__( self, model, device, dtype, num_frames, camera_views, ref_position, random_background=False, offset_noise=False, resize_rate=1, mode="pixel", image_size=256, seed=1234, ) -> None: assert mode in ["pixel", "local"] size = image_size self.seed = seed batch_size = max(4, num_frames) neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear." uc = model.get_learned_conditioning([neg_texts]).to(device) sampler = DDIMSampler(model) # pre-compute camera matrices camera = [get_camera_for_index(i).squeeze() for i in camera_views] if ref_position is not None: camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero camera = torch.stack(camera) camera = camera.repeat(batch_size // num_frames, 1).to(device) self.image_transform = T.Compose( [ T.Resize((size, size)), T.ToTensor(), T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) self.dtype = dtype self.mode = mode self.ref_position = ref_position self.random_background = random_background self.resize_rate = resize_rate self.num_frames = num_frames self.size = size self.device = device self.batch_size = batch_size self.model = model self.sampler = sampler self.uc = uc self.camera = camera self.offset_noise = offset_noise @staticmethod def i2iStage2( model, image_size, prompt, uc, sampler, pixel_images, ip=None, step=20, scale=5.0, batch_size=8, ddim_eta=0.0, dtype=torch.float32, device="cuda", camera=None, num_frames=4, pixel_control=False, transform=None, offset_noise=False, ): ip_raw = ip if type(prompt) != list: prompt = [prompt] with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype): c = model.get_learned_conditioning(prompt).to( device ) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05 c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size uc_ = {"context": uc.repeat(batch_size, 1, 1)} if camera is not None: c_["camera"] = uc_["camera"] = ( camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00 ) c_["num_frames"] = uc_["num_frames"] = num_frames if ip is not None: ip_embed = model.get_learned_image_conditioning(ip).to( device ) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12 ip_ = ip_embed.repeat(batch_size, 1, 1) c_["ip"] = ip_ uc_["ip"] = torch.zeros_like(ip_) if pixel_control: assert camera is not None transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images]) latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images)) c_["pixel_images"] = latent_pixel_images uc_["pixel_images"] = torch.zeros_like(latent_pixel_images) shape = [4, image_size // 8, image_size // 8] # [4, 32, 32] if offset_noise: ref = transform(ip_raw).to(device) ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :])) ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True) time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device) x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps) samples_ddim, _ = ( sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43 S=step, conditioning=c_, batch_size=batch_size, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc_, eta=ddim_eta, x_T=x_T if offset_noise else None, ) ) x_sample = model.decode_first_stage(samples_ddim) x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy() return list(x_sample.astype(np.uint8)) @torch.no_grad() def diffuse(self, t, ip, pixel_images, n_test=2): set_seed(self.seed) ip = do_resize_content(ip, self.resize_rate) pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images] if self.random_background: bg_color = np.random.rand() * 255 ip = add_random_background(ip, bg_color) pixel_images = [add_random_background(i, bg_color) for i in pixel_images] images = [] for _ in range(n_test): img = self.i2iStage2( self.model, self.size, t, self.uc, self.sampler, pixel_images=pixel_images, ip=ip, step=50, scale=5, batch_size=self.batch_size, ddim_eta=0.0, dtype=self.dtype, device=self.device, camera=self.camera, num_frames=self.num_frames, pixel_control=(self.mode == "pixel"), transform=self.image_transform, offset_noise=self.offset_noise, ) img = np.concatenate(img, 1) img = np.concatenate( (img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]), axis=1, ) images.append(img) set_seed() # unset random and numpy seed return images