import numpy as np import torch import torch.nn as nn class PositionEmbeddingSine1D(nn.Module): def __init__(self, d_model: int, max_len: int = 500, batch_first: bool = False) -> None: super().__init__() self.batch_first = batch_first pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange( 0, d_model, 2).float() * (-np.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.batch_first: x = x + self.pe.permute(1, 0, 2)[:, :x.shape[1], :] else: x = x + self.pe[:x.shape[0], :] return x class PositionEmbeddingLearned1D(nn.Module): def __init__(self, d_model: int, max_len: int = 500, batch_first: bool = False) -> None: super().__init__() self.batch_first = batch_first self.pe = nn.Parameter(torch.zeros(max_len, 1, d_model)) self.reset_parameters() def reset_parameters(self) -> None: nn.init.uniform_(self.pe) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.batch_first: x = x + self.pe.permute(1, 0, 2)[:, :x.shape[1], :] else: x = x + self.pe[:x.shape[0], :] return x def build_position_encoding(N_steps: int, position_embedding: str = "sine") -> nn.Module: if position_embedding == 'sine': position_embedding = PositionEmbeddingSine1D(N_steps) elif position_embedding == 'learned': position_embedding = PositionEmbeddingLearned1D(N_steps) else: raise ValueError(f"not supported {position_embedding}") return position_embedding