import random import numpy as np from rich import get_console from rich.table import Table import torch import torch.nn as nn def set_seed(seed: int) -> None: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def print_table(title: str, metrics: dict) -> None: table = Table(title=title) table.add_column("Metrics", style="cyan", no_wrap=True) table.add_column("Value", style="magenta") for key, value in metrics.items(): table.add_row(key, str(value)) console = get_console() console.print(table, justify="center") def move_batch_to_device(batch: dict, device: torch.device) -> dict: for key in batch.keys(): if isinstance(batch[key], torch.Tensor): batch[key] = batch[key].to(device) return batch def count_parameters(module: nn.Module) -> float: num_params = sum(p.numel() for p in module.parameters()) return round(num_params / 1e6, 3) def get_guidance_scale_embedding(w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32) -> torch.Tensor: assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb def extract_into_tensor(a: torch.Tensor, t: torch.Tensor, x_shape: torch.Size) -> torch.Tensor: b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def sum_flat(tensor: torch.Tensor) -> torch.Tensor: return tensor.sum(dim=list(range(1, len(tensor.shape))))