import torch from torchmetrics import Metric from torchmetrics.utilities import dim_zero_cat from .utils import calculate_multimodality_np class MMMetrics(Metric): def __init__(self, mm_num_times: int = 10, dist_sync_on_step: bool = True) -> None: super().__init__(dist_sync_on_step=dist_sync_on_step) self.name = "MultiModality scores" self.mm_num_times = mm_num_times self.add_state("count", default=torch.tensor(0), dist_reduce_fx="sum") self.add_state("count_seq", default=torch.tensor(0), dist_reduce_fx="sum") self.metrics = ["MultiModality"] self.add_state("MultiModality", default=torch.tensor(0.), dist_reduce_fx="sum") # cached batches self.add_state("mm_motion_embeddings", default=[], dist_reduce_fx='cat') def compute(self) -> dict: # init metrics metrics = {metric: getattr(self, metric) for metric in self.metrics} # cat all embeddings all_mm_motions = dim_zero_cat(self.mm_motion_embeddings).cpu().numpy() metrics['MultiModality'] = calculate_multimodality_np( all_mm_motions, self.mm_num_times) return {**metrics} def update(self, mm_motion_embeddings: torch.Tensor, lengths: list[int]) -> None: self.count += sum(lengths) self.count_seq += len(lengths) # store all mm motion embeddings self.mm_motion_embeddings.append(mm_motion_embeddings)