import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence class TextEncoderBiGRUCo(nn.Module): def __init__(self, word_size: int, pos_size: int, hidden_size: int, output_size: int) -> None: super(TextEncoderBiGRUCo, self).__init__() self.pos_emb = nn.Linear(pos_size, word_size) self.input_emb = nn.Linear(word_size, hidden_size) self.gru = nn.GRU( hidden_size, hidden_size, batch_first=True, bidirectional=True ) self.output_net = nn.Sequential( nn.Linear(hidden_size * 2, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size), ) self.hidden_size = hidden_size self.hidden = nn.Parameter( torch.randn((2, 1, self.hidden_size), requires_grad=True) ) def forward(self, word_embs: torch.Tensor, pos_onehot: torch.Tensor, cap_lens: torch.Tensor) -> torch.Tensor: num_samples = word_embs.shape[0] pos_embs = self.pos_emb(pos_onehot) inputs = word_embs + pos_embs input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = cap_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) return self.output_net(gru_last)