import numpy as np import torch from torch.nn import functional as F from torchvision.transforms.functional import resize, to_pil_image # type: ignore from copy import deepcopy from typing import Tuple class ResizeLongestSide: """ Resizes images to the longest side 'target_length', as well as provides methods for resizing coordinates and boxes. Provides methods for transforming both numpy array and batched torch tensors. """ def __init__(self, target_length: int) -> None: self.target_length = target_length def apply_image(self, image: np.ndarray) -> np.ndarray: """ Expects a numpy array with shape HxWxC in uint8 format. """ target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) return np.array(resize(to_pil_image(image), target_size)) def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: """ Expects a numpy array of length 2 in the final dimension. Requires the original image size in (H, W) format. """ old_h, old_w = original_size new_h, new_w = self.get_preprocess_shape( original_size[0], original_size[1], self.target_length ) coords = deepcopy(coords).astype(float) coords[..., 0] = coords[..., 0] * (new_w / old_w) coords[..., 1] = coords[..., 1] * (new_h / old_h) return coords def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: """ Expects a numpy array shape Bx4. Requires the original image size in (H, W) format. """ boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) return boxes.reshape(-1, 4) def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: """ Expects batched images with shape BxCxHxW and float format. This transformation may not exactly match apply_image. apply_image is the transformation expected by the model. """ # Expects an image in BCHW format. May not exactly match apply_image. target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length) return F.interpolate( image, target_size, mode="bilinear", align_corners=False, antialias=True ) def apply_coords_torch( self, coords: torch.Tensor, original_size: Tuple[int, ...] ) -> torch.Tensor: """ Expects a torch tensor with length 2 in the last dimension. Requires the original image size in (H, W) format. """ old_h, old_w = original_size new_h, new_w = self.get_preprocess_shape( original_size[0], original_size[1], self.target_length ) coords = deepcopy(coords).to(torch.float) coords[..., 0] = coords[..., 0] * (new_w / old_w) coords[..., 1] = coords[..., 1] * (new_h / old_h) return coords def apply_boxes_torch( self, boxes: torch.Tensor, original_size: Tuple[int, ...] ) -> torch.Tensor: """ Expects a torch tensor with shape Bx4. Requires the original image size in (H, W) format. """ boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) return boxes.reshape(-1, 4) @staticmethod def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: """ Compute the output size given input size and target long side length. """ scale = long_side_length * 1.0 / max(oldh, oldw) newh, neww = oldh * scale, oldw * scale neww = int(neww + 0.5) newh = int(newh + 0.5) return (newh, neww)