# app.py — Rolo: RT-DETRv2-only (Supervisely) trainer with auto COCO conversion & safe config patching import os, sys, subprocess, shutil, stat, yaml, gradio as gr, re, random, logging, requests, json, base64, time, pathlib, tempfile, textwrap from urllib.parse import urlparse from glob import glob from threading import Thread from queue import Queue import pandas as pd import matplotlib.pyplot as plt from roboflow import Roboflow from PIL import Image import torch from string import Template # <-- used by the shim # Quiet some noisy libs on Spaces (harmless locally) os.environ.setdefault("YOLO_CONFIG_DIR", "/tmp/Ultralytics") os.environ.setdefault("WANDB_DISABLED", "true") logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") REPO_URL = "https://github.com/supervisely-ecosystem/RT-DETRv2" REPO_DIR = os.path.join(os.getcwd(), "third_party", "RT-DETRv2") PY_IMPL_DIR = os.path.join(REPO_DIR, "rtdetrv2_pytorch") # Supervisely keeps PyTorch impl here # Core deps — Ultralytics removed per request COMMON_REQUIREMENTS = [ "gradio>=4.36.1", "roboflow>=1.1.28", "requests>=2.31.0", "huggingface_hub>=0.22.0", "pandas>=2.0.0", "matplotlib>=3.7.0", "torch>=2.0.1", "torchvision>=0.15.2", "pyyaml>=6.0.1", "Pillow>=10.0.0", "supervisely>=6.0.0", "tensorboard>=2.13.0", "pycocotools>=2.0.7", ] # === bootstrap (clone + pip) =================================================== def pip_install(args): logging.info(f"pip install {' '.join(args)}") subprocess.check_call([sys.executable, "-m", "pip", "install"] + args) def ensure_repo_and_requirements(): os.makedirs(os.path.dirname(REPO_DIR), exist_ok=True) if not os.path.exists(REPO_DIR): logging.info(f"Cloning RT-DETRv2 repo to {REPO_DIR} ...") subprocess.check_call(["git", "clone", "--depth", "1", REPO_URL, REPO_DIR]) else: try: subprocess.check_call(["git", "-C", REPO_DIR, "pull", "--ff-only"]) except Exception: logging.warning("git pull failed; continuing with current checkout") # On HF Spaces: expect requirements.txt to be used at build time; skip heavy runtime installs if os.getenv("HF_SPACE") == "1" or os.getenv("SPACE_ID"): logging.info("Detected Hugging Face Space — skipping runtime pip installs.") return # Local fallback (non-Spaces) pip_install(COMMON_REQUIREMENTS) req_file = os.path.join(PY_IMPL_DIR, "requirements.txt") if os.path.exists(req_file): pip_install(["-r", req_file]) try: import supervisely # noqa: F401 except Exception: logging.warning("supervisely not importable after first pass; retrying install…") pip_install(["supervisely>=6.0.0"]) try: ensure_repo_and_requirements() except Exception: logging.exception("Bootstrap failed, UI will still load so you can see errors") # === model choices (restricted to Supervisely RT-DETRv2) ====================== MODEL_CHOICES = [ ("rtdetrv2_s", "S (r18vd, 120e) — default"), ("rtdetrv2_m", "M (r34vd, 120e)"), ("rtdetrv2_msp", "M* (r50vd_m, 7x)"), ("rtdetrv2_l", "L (r50vd, 6x)"), ("rtdetrv2_x", "X (r101vd, 6x)"), ] DEFAULT_MODEL_KEY = "rtdetrv2_s" CONFIG_PATHS = { "rtdetrv2_s": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r18vd_120e_coco.yml", "rtdetrv2_m": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r34vd_120e_coco.yml", "rtdetrv2_msp": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r50vd_m_7x_coco.yml", "rtdetrv2_l": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r50vd_6x_coco.yml", "rtdetrv2_x": "rtdetrv2_pytorch/configs/rtdetrv2/rtdetrv2_r101vd_6x_coco.yml", } CKPT_URLS = { "rtdetrv2_s": "https://github.com/lyuwenyu/storage/releases/download/v0.2/rtdetrv2_r18vd_120e_coco_rerun_48.1.pth", "rtdetrv2_m": "https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetrv2_r34vd_120e_coco_ema.pth", "rtdetrv2_msp": "https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetrv2_r50vd_m_7x_coco_ema.pth", "rtdetrv2_l": "https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetrv2_r50vd_6x_coco_ema.pth", "rtdetrv2_x": "https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetrv2_r101vd_6x_coco_from_paddle.pth", } # === utilities ================================================================ def handle_remove_readonly(func, path, exc_info): try: os.chmod(path, stat.S_IWRITE) except Exception: pass func(path) _ROBO_URL_RX = re.compile(r""" ^(?: (?:https?://)?(?:universe|app|www)?\.?roboflow\.com/ (?P[A-Za-z0-9\-_]+)/(?P[A-Za-z0-9\-_]+)/?(?:(?:dataset/[^/]+/)?(?:v?(?P\d+))?)? | (?P[A-Za-z0-9\-_]+)/(?P[A-Za-z0-9\-_]+)(?:/(?:v)?(?P\d+))? )$ """, re.VERBOSE | re.IGNORECASE) def parse_roboflow_url(s: str): s = s.strip() m = _ROBO_URL_RX.match(s) if m: ws = m.group('ws') or m.group('ws2') proj = m.group('proj') or m.group('proj2') ver = m.group('ver') or m.group('ver2') return ws, proj, (int(ver) if ver else None) parsed = urlparse(s) parts = [p for p in parsed.path.strip('/').split('/') if p] if len(parts) >= 2: version = None if len(parts) >= 3: v = parts[2] if v.lower().startswith('v') and v[1:].isdigit(): version = int(v[1:]) elif v.isdigit(): version = int(v) return parts[0], parts[1], version if '/' in s and 'roboflow' not in s: p = s.split('/') if len(p) >= 2: version = None if len(p) >= 3: v = p[2] if v.lower().startswith('v') and v[1:].isdigit(): version = int(v[1:]) elif v.isdigit(): version = int(v) return p[0], p[1], version return None, None, None def get_latest_version(api_key, workspace, project): try: rf = Roboflow(api_key=api_key) proj = rf.workspace(workspace).project(project) versions = sorted([int(v.version) for v in proj.versions()], reverse=True) return versions[0] if versions else None except Exception as e: logging.error(f"Could not get latest version for {workspace}/{project}: {e}") return None def _extract_class_names(data_yaml): names = data_yaml.get('names', None) if isinstance(names, dict): def _k(x): try: return int(x) except Exception: return str(x) keys = sorted(names.keys(), key=_k) names_list = [names[k] for k in keys] elif isinstance(names, list): names_list = names else: nc = int(data_yaml.get('nc', 0) or 0) names_list = [f"class_{i}" for i in range(nc)] return [str(x) for x in names_list] def download_dataset(api_key, workspace, project, version): try: rf = Roboflow(api_key=api_key) proj = rf.workspace(workspace).project(project) ver = proj.version(int(version)) dataset = ver.download("yolov8") # labels in YOLO format (we'll convert to COCO) data_yaml_path = os.path.join(dataset.location, 'data.yaml') with open(data_yaml_path, 'r', encoding="utf-8") as f: data_yaml = yaml.safe_load(f) class_names = _extract_class_names(data_yaml) splits = [s for s in ['train', 'valid', 'test'] if os.path.exists(os.path.join(dataset.location, s))] return dataset.location, class_names, splits, f"{project}-v{version}" except Exception as e: logging.error(f"Failed to download {workspace}/{project}/v{version}: {e}") return None, [], [], None def label_path_for(img_path: str) -> str: split_dir = os.path.dirname(os.path.dirname(img_path)) base = os.path.splitext(os.path.basename(img_path))[0] + '.txt' return os.path.join(split_dir, 'labels', base) # === YOLOv8 -> COCO converter ================================================= def yolo_to_coco(split_dir_images, split_dir_labels, class_names, out_json): images, annotations = [], [] categories = [{"id": i, "name": n} for i, n in enumerate(class_names)] ann_id = 1 img_id = 1 for fname in sorted(os.listdir(split_dir_images)): if not fname.lower().endswith((".jpg", ".jpeg", ".png")): continue img_path = os.path.join(split_dir_images, fname) try: with Image.open(img_path) as im: w, h = im.size except Exception: continue images.append({"id": img_id, "file_name": fname, "width": w, "height": h}) label_file = os.path.join(split_dir_labels, os.path.splitext(fname)[0] + ".txt") if os.path.exists(label_file): with open(label_file, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split() if len(parts) < 5: continue try: cls = int(float(parts[0])) cx, cy, bw, bh = map(float, parts[1:5]) except Exception: continue x = max(0.0, (cx - bw / 2.0) * w) y = max(0.0, (cy - bh / 2.0) * h) ww = max(1.0, bw * w) hh = max(1.0, bh * h) if x + ww > w: ww = max(1.0, w - x) if y + hh > h: hh = max(1.0, h - y) annotations.append({ "id": ann_id, "image_id": img_id, "category_id": cls, "bbox": [x, y, ww, hh], "area": max(1.0, ww * hh), "iscrowd": 0, "segmentation": [] }) ann_id += 1 img_id += 1 coco = {"images": images, "annotations": annotations, "categories": categories} os.makedirs(os.path.dirname(out_json), exist_ok=True) with open(out_json, "w", encoding="utf-8") as f: json.dump(coco, f) def make_coco_annotations(merged_dir, class_names): ann_dir = os.path.join(merged_dir, "annotations") os.makedirs(ann_dir, exist_ok=True) mapping = {"train": "instances_train.json", "valid": "instances_val.json", "test": "instances_test.json"} for split, outname in mapping.items(): img_dir = os.path.join(merged_dir, split, "images") lbl_dir = os.path.join(merged_dir, split, "labels") out_json = os.path.join(ann_dir, outname) if os.path.exists(img_dir) and os.listdir(img_dir): yolo_to_coco(img_dir, lbl_dir, class_names, out_json) return ann_dir # === dataset merging ========================================================== def gather_class_counts(dataset_info, class_mapping): if not dataset_info: return {} final_names = set(v for v in class_mapping.values() if v is not None) counts = {name: 0 for name in final_names} for loc, names, splits, _ in dataset_info: id_to_name = {idx: class_mapping.get(n, None) for idx, n in enumerate(names)} for split in splits: labels_dir = os.path.join(loc, split, 'labels') if not os.path.exists(labels_dir): continue for label_file in os.listdir(labels_dir): if not label_file.endswith('.txt'): continue found = set() with open(os.path.join(labels_dir, label_file), 'r', encoding="utf-8") as f: for line in f: parts = line.strip().split() if not parts: continue try: cls_id = int(parts[0]) mapped = id_to_name.get(cls_id, None) if mapped: found.add(mapped) except Exception: continue for m in found: counts[m] += 1 return counts def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=gr.Progress()): merged_dir = 'rolo_merged_dataset' if os.path.exists(merged_dir): shutil.rmtree(merged_dir, onerror=handle_remove_readonly) progress(0, desc="Creating directories...") for split in ['train', 'valid', 'test']: os.makedirs(os.path.join(merged_dir, split, 'images'), exist_ok=True) os.makedirs(os.path.join(merged_dir, split, 'labels'), exist_ok=True) active_classes = sorted({cls for cls, limit in class_limits.items() if limit > 0}) final_class_map = {name: i for i, name in enumerate(active_classes)} all_images = [] for loc, _, splits, _ in dataset_info: for split in splits: img_dir = os.path.join(loc, split, 'images') if not os.path.exists(img_dir): continue for img_file in os.listdir(img_dir): if img_file.lower().endswith(('.jpg', '.jpeg', '.png')): all_images.append((os.path.join(img_dir, img_file), split, loc)) random.shuffle(all_images) progress(0.2, desc="Selecting images based on limits...") selected_images, current_counts = [], {cls: 0 for cls in active_classes} loc_to_names = {info[0]: info[1] for info in dataset_info} for img_path, split, source_loc in progress.tqdm(all_images, desc="Analyzing images"): lbl_path = label_path_for(img_path) if not os.path.exists(lbl_path): continue source_names = loc_to_names.get(source_loc, []) image_classes = set() with open(lbl_path, 'r', encoding="utf-8") as f: for line in f: parts = line.strip().split() if not parts: continue try: cls_id = int(parts[0]) orig = source_names[cls_id] mapped = class_mapping.get(orig, orig) if mapped in active_classes: image_classes.add(mapped) except Exception: continue if not image_classes: continue if any(current_counts[c] >= class_limits[c] for c in image_classes): continue selected_images.append((img_path, split)) for c in image_classes: current_counts[c] += 1 progress(0.6, desc=f"Copying {len(selected_images)} files...") for img_path, split in progress.tqdm(selected_images, desc="Finalizing files"): lbl_path = label_path_for(img_path) out_img = os.path.join(merged_dir, split, 'images', os.path.basename(img_path)) out_lbl = os.path.join(merged_dir, split, 'labels', os.path.basename(lbl_path)) shutil.copy(img_path, out_img) source_loc = None for info in dataset_info: if img_path.startswith(info[0]): source_loc = info[0] break source_names = loc_to_names.get(source_loc, []) with open(lbl_path, 'r', encoding="utf-8") as f_in, open(out_lbl, 'w', encoding="utf-8") as f_out: for line in f_in: parts = line.strip().split() if not parts: continue try: old_id = int(parts[0]) original_name = source_names[old_id] mapped_name = class_mapping.get(original_name, original_name) if mapped_name in final_class_map: new_id = final_class_map[mapped_name] f_out.write(f"{new_id} {' '.join(parts[1:])}\n") except Exception: continue progress(0.9, desc="Writing data.yaml + COCO annotations...") with open(os.path.join(merged_dir, 'data.yaml'), 'w', encoding="utf-8") as f: yaml.dump({ 'path': os.path.abspath(merged_dir), 'train': 'train/images', 'val': 'valid/images', 'test': 'test/images', 'nc': len(active_classes), 'names': active_classes }, f) ann_dir = make_coco_annotations(merged_dir, active_classes) progress(0.98, desc="Finalizing...") return f"Dataset finalized with {len(selected_images)} images.", os.path.abspath(merged_dir) # === entrypoint + config detection/generation ================================= def find_training_script(repo_root): canonical = os.path.join(repo_root, "rtdetrv2_pytorch", "tools", "train.py") if os.path.exists(canonical): return canonical candidates = [] for pat in ["**/tools/train.py", "**/train.py", "**/tools/train_net.py"]: candidates.extend(glob(os.path.join(repo_root, pat), recursive=True)) def _score(p): pl = p.replace("\\", "/").lower() return (0 if "rtdetrv2_pytorch" in pl else 1, len(p)) candidates.sort(key=_score) return candidates[0] if candidates else None def find_model_config_template(model_key): rel = CONFIG_PATHS.get(model_key) if not rel: return None path = os.path.join(REPO_DIR, rel) return path if os.path.exists(path) else None def _set_first_existing_key(d: dict, keys: list, value, fallback_key: str | None = None): for k in keys: if k in d: d[k] = value return k if fallback_key: d[fallback_key] = value return fallback_key return None def _set_first_existing_key_deep(cfg: dict, keys: list, value): for scope in [cfg, cfg.get("model", {}), cfg.get("solver", {})]: if isinstance(scope, dict): for k in keys: if k in scope: scope[k] = value return True if "model" not in cfg or not isinstance(cfg["model"], dict): cfg["model"] = {} cfg["model"][keys[0]] = value return True def _install_supervisely_logger_shim(): root = pathlib.Path(tempfile.gettempdir()) / "sly_shim_pkg" pkg_training = root / "supervisely" / "nn" / "training" pkg_training.mkdir(parents=True, exist_ok=True) for p in [root / "supervisely", root / "supervisely" / "nn", pkg_training]: init_file = p / "__init__.py" if not init_file.exists(): init_file.write_text("") (pkg_training / "__init__.py").write_text(textwrap.dedent(""" class _TrainLogger: def __init__(self): pass def reset(self): pass def log_metrics(self, metrics: dict, step: int | None = None): pass def log_artifacts(self, *a, **k): pass def log_image(self, *a, **k): pass train_logger = _TrainLogger() """)) return str(root) # ---- [!! CORRECTED !!] robust sitecustomize shim with lazy import hook -------------------- def _install_workspace_shim_v3(dest_dir: str, module_default: str = "rtdetrv2_pytorch.src"): """ sitecustomize shim that: - patches workspace.create to handle dict-based component definitions, - ensures cfg is a dict, - injects cfg['_pymodule'] as a *module object*, even if the target module is imported after sitecustomize runs. """ os.makedirs(dest_dir, exist_ok=True) sc_path = os.path.join(dest_dir, "sitecustomize.py") tmpl = Template(r""" import os, sys, importlib, importlib.abc, importlib.util, importlib.machinery, types MOD_DEFAULT = os.environ.get("RTDETR_PYMODULE", "$module_default") or "$module_default" TARGET = "rtdetrv2_pytorch.src.core.workspace" def _ensure_pymodule_object(cfg: dict): pm = cfg.get("_pymodule", None) if isinstance(pm, types.ModuleType): return pm name = (pm or "").strip() if isinstance(pm, str) else MOD_DEFAULT if not name: name = MOD_DEFAULT try: mod = importlib.import_module(name) except Exception: mod = importlib.import_module(MOD_DEFAULT) cfg["_pymodule"] = mod return mod def _patch_ws(ws_mod): if getattr(ws_mod, "__rolo_patched__", False): return _orig_create = ws_mod.create # NEW, FIXED create function def create(name, *args, **kwargs): # Unify all config sources into one dictionary. The main config is often the second arg. cfg = {} if args and isinstance(args[0], dict): cfg.update(args[0]) if 'cfg' in kwargs and isinstance(kwargs['cfg'], dict): cfg.update(kwargs['cfg']) _ensure_pymodule_object(cfg) # The core of the fix: handle when the component itself is passed as a dict. # This is what happens when the library tries to create the model. if isinstance(name, dict): component_params = name.copy() type_name = component_params.pop('type', None) if type_name is None: # If no 'type' key, we can't proceed. Fall back to original to get the original error. return _orig_create(name, *args, **kwargs) # Merge the component's own parameters (like num_classes) into the main config. cfg.update(component_params) # Now, call the original `create` function the way it expects: # with the component name as a string, and the full config. return _orig_create(type_name, cfg=cfg) # If 'name' was already a string (the normal case for solvers, etc.), proceed as expected. return _orig_create(name, cfg=cfg) ws_mod.create = create ws_mod.__rolo_patched__ = True def _try_patch_now(): try: ws_mod = importlib.import_module(TARGET) _patch_ws(ws_mod) return True except Exception: return False if not _try_patch_now(): class _RoloFinder(importlib.abc.MetaPathFinder): def find_spec(self, fullname, path, target=None): if fullname != TARGET: return None origin_spec = importlib.util.find_spec(fullname) if origin_spec is None or origin_spec.loader is None: return None loader = origin_spec.loader class _RoloLoader(importlib.abc.Loader): def create_module(self, spec): if hasattr(loader, "create_module"): return loader.create_module(spec) return None def exec_module(self, module): loader.exec_module(module) try: _patch_ws(module) except Exception: pass spec = importlib.machinery.ModuleSpec(fullname, _RoloLoader(), origin=origin_spec.origin) spec.submodule_search_locations = origin_spec.submodule_search_locations return spec sys.meta_path.insert(0, _RoloFinder()) """) code = tmpl.substitute(module_default=module_default) with open(sc_path, "w", encoding="utf-8") as f: f.write(code) return sc_path def _ensure_checkpoint(model_key: str, out_dir: str) -> str | None: url = CKPT_URLS.get(model_key) if not url: return None os.makedirs(out_dir, exist_ok=True) fname = os.path.join(out_dir, os.path.basename(url)) if os.path.exists(fname) and os.path.getsize(fname) > 0: return fname logging.info(f"Downloading pretrained checkpoint for {model_key} from {url}") try: with requests.get(url, stream=True, timeout=60) as r: r.raise_for_status() with open(fname, "wb") as f: for chunk in r.iter_content(chunk_size=1024 * 1024): if chunk: f.write(chunk) return fname except Exception as e: logging.warning(f"Could not fetch checkpoint: {e}") try: if os.path.exists(fname): os.remove(fname) except Exception: pass return None # --- include absolutizer ------------------------------------------------------ def _absify_any_paths_deep(node, base_dir, include_keys=("base", "_base_", "BASE", "BASE_YAML", "includes", "include", "BASES", "__include__")): def _absify(s: str) -> str: if os.path.isabs(s): return s if s.startswith("../") or s.endswith((".yml", ".yaml")): return os.path.abspath(os.path.join(base_dir, s)) return s if isinstance(node, dict): for k in list(node.keys()): v = node[k] if k in include_keys: if isinstance(v, str): node[k] = _absify(v) elif isinstance(v, list): node[k] = [_absify(x) if isinstance(x, str) else x for x in v] for k, v in list(node.items()): if isinstance(v, (dict, list)): _absify_any_paths_deep(v, base_dir, include_keys) elif isinstance(v, str): node[k] = _absify(v) elif isinstance(node, list): for i, v in enumerate(list(node)): if isinstance(v, (dict, list)): _absify_any_paths_deep(v, base_dir, include_keys) elif isinstance(v, str): node[i] = _absify(v) # --- NEW: safe model field setters -------------------------------------------- def _set_num_classes_safely(cfg: dict, n: int): def set_num_classes(node): if not isinstance(node, dict): return False if "num_classes" in node: node["num_classes"] = int(n) return True for k, v in node.items(): if isinstance(v, dict) and set_num_classes(v): return True return False m = cfg.get("model", None) if isinstance(m, dict): if not set_num_classes(m): m["num_classes"] = int(n) return if isinstance(m, str): block = cfg.get(m, None) if isinstance(block, dict): if not set_num_classes(block): block["num_classes"] = int(n) return cfg["num_classes"] = int(n) def _maybe_set_model_field(cfg: dict, key: str, value): m = cfg.get("model", None) if isinstance(m, dict): m[key] = value return if isinstance(m, str) and isinstance(cfg.get(m), dict): cfg[m][key] = value return cfg[key] = value # --- UPDATED: dataset override (+ keep includes) + sync_bn off ---------------- def patch_base_config(base_cfg_path, merged_dir, class_count, run_name, epochs, batch, imgsz, lr, optimizer, pretrained_path: str | None): if not base_cfg_path or not os.path.exists(base_cfg_path): raise gr.Error("Could not locate a model config inside the RT-DETRv2 repo.") template_dir = os.path.dirname(base_cfg_path) # Load YAML then absolutize include-like paths (KEEP includes; do not prune) with open(base_cfg_path, "r", encoding="utf-8") as f: cfg = yaml.safe_load(f) _absify_any_paths_deep(cfg, template_dir) # Ensure the runtime knows which Python module hosts builders cfg["task"] = cfg.get("task", "detection") cfg["_pymodule"] = cfg.get("_pymodule", "rtdetrv2_pytorch.src") # <= hint for loader # Disable SyncBN for single GPU/CPU runs; guard DDP flags cfg["sync_bn"] = False cfg.setdefault("device", "") cfg["find_unused_parameters"] = False ann_dir = os.path.join(merged_dir, "annotations") paths = { "train_json": os.path.abspath(os.path.join(ann_dir, "instances_train.json")), "val_json": os.path.abspath(os.path.join(ann_dir, "instances_val.json")), "test_json": os.path.abspath(os.path.join(ann_dir, "instances_test.json")), "train_img": os.path.abspath(os.path.join(merged_dir, "train", "images")), "val_img": os.path.abspath(os.path.join(merged_dir, "valid", "images")), "test_img": os.path.abspath(os.path.join(merged_dir, "test", "images")), "out_dir": os.path.abspath(os.path.join("runs", "train", run_name)), } def ensure_and_patch_dl(dl_key, img_key, json_key, default_shuffle): block = cfg.get(dl_key) if not isinstance(block, dict): block = { "type": "DataLoader", "dataset": { "type": "CocoDetection", "img_folder": paths[img_key], "ann_file": paths[json_key], "return_masks": False, "transforms": { "type": "Compose", "ops": [ {"type": "Resize", "size": [int(imgsz), int(imgsz)]}, {"type": "ConvertPILImage", "dtype": "float32", "scale": True}, ], }, }, "shuffle": bool(default_shuffle), "num_workers": 2, "drop_last": bool(dl_key == "train_dataloader"), "collate_fn": {"type": "BatchImageCollateFunction"}, "total_batch_size": int(batch), } cfg[dl_key] = block ds = block.get("dataset", {}) if isinstance(ds, dict): ds["img_folder"] = paths[img_key] ds["ann_file"] = paths[json_key] for k in ("img_dir", "image_root", "data_root"): if k in ds: ds[k] = paths[img_key] for k in ("ann_path", "annotation", "annotations"): if k in ds: ds[k] = paths[json_key] block["dataset"] = ds block["total_batch_size"] = int(batch) block.setdefault("num_workers", 2) block.setdefault("shuffle", bool(default_shuffle)) block.setdefault("drop_last", bool(dl_key == "train_dataloader")) # ---- FORCE-FIX collate name typo even if it existed already cf = block.get("collate_fn", {}) if isinstance(cf, dict): t = str(cf.get("type", "")) if t.lower() == "batchimagecollatefuncion" or "Funcion" in t: cf["type"] = "BatchImageCollateFunction" block["collate_fn"] = cf else: block["collate_fn"] = {"type": "BatchImageCollateFunction"} ensure_and_patch_dl("train_dataloader", "train_img", "train_json", default_shuffle=True) ensure_and_patch_dl("val_dataloader", "val_img", "val_json", default_shuffle=False) _set_num_classes_safely(cfg, int(class_count)) applied_epoch = False for key in ("epoches", "max_epoch", "epochs", "num_epochs"): if key in cfg: cfg[key] = int(epochs) applied_epoch = True break if "solver" in cfg and isinstance(cfg["solver"], dict): for key in ("epoches", "max_epoch", "epochs", "num_epochs"): if key in cfg["solver"]: cfg["solver"][key] = int(epochs) applied_epoch = True break if not applied_epoch: cfg["epoches"] = int(epochs) cfg["input_size"] = int(imgsz) if "solver" not in cfg or not isinstance(cfg["solver"], dict): cfg["solver"] = {} sol = cfg["solver"] for key in ("base_lr", "lr", "learning_rate"): if key in sol: sol[key] = float(lr) break else: sol["base_lr"] = float(lr) sol["optimizer"] = str(optimizer).lower() if "train_dataloader" not in cfg or not isinstance(cfg["train_dataloader"], dict): sol["batch_size"] = int(batch) if "output_dir" in cfg: cfg["output_dir"] = paths["out_dir"] else: sol["output_dir"] = paths["out_dir"] if pretrained_path: p = os.path.abspath(pretrained_path) _maybe_set_model_field(cfg, "pretrain", p) _maybe_set_model_field(cfg, "pretrained", p) if not cfg.get("model"): cfg["model"] = {"type": "RTDETR", "num_classes": int(class_count)} cfg_out_dir = os.path.join(template_dir, "generated") os.makedirs(cfg_out_dir, exist_ok=True) out_path = os.path.join(cfg_out_dir, f"{run_name}.yaml") class _NoFlowDumper(yaml.SafeDumper): ... def _repr_list_block(dumper, data): return dumper.represent_sequence('tag:yaml.org,2002:seq', data, flow_style=False) _NoFlowDumper.add_representer(list, _repr_list_block) with open(out_path, "w", encoding="utf-8") as f: yaml.dump(cfg, f, Dumper=_NoFlowDumper, sort_keys=False, allow_unicode=True) return out_path def find_best_checkpoint(out_dir): pats = [ os.path.join(out_dir, "**", "best*.pt"), os.path.join(out_dir, "**", "best*.pth"), os.path.join(out_dir, "**", "model_best*.pt"), os.path.join(out_dir, "**", "model_best*.pth"), ] for p in pats: f = sorted(glob(p, recursive=True)) if f: return f[0] any_ckpt = sorted( glob(os.path.join(out_dir, "**", "*.pt"), recursive=True) + glob(os.path.join(out_dir, "**", "*.pth"), recursive=True) ) return any_ckpt[-1] if any_ckpt else None # === Gradio handlers ========================================================== def load_datasets_handler(api_key, url_file, progress=gr.Progress()): api_key = api_key or os.getenv("ROBOFLOW_API_KEY", "") if not api_key: raise gr.Error("Roboflow API Key is required (or set ROBOFLOW_API_KEY).") if not url_file: raise gr.Error("Upload a .txt with Roboflow URLs or 'workspace/project[/vN]' lines.") with open(url_file.name, 'r', encoding='utf-8', errors='ignore') as f: urls = [line.strip() for line in f if line.strip()] dataset_info, failures = [], [] for i, raw in enumerate(urls): progress((i + 1) / max(1, len(urls)), desc=f"Parsing {i+1}/{len(urls)}") ws, proj, ver = parse_roboflow_url(raw) if not (ws and proj): failures.append((raw, "ParseError: could not resolve workspace/project")) continue if ver is None: ver = get_latest_version(api_key, ws, proj) if ver is None: failures.append((raw, f"No latest version for {ws}/{proj}")) continue loc, names, splits, name_str = download_dataset(api_key, ws, proj, int(ver)) if loc: dataset_info.append((loc, names, splits, name_str)) else: failures.append((raw, f"DownloadError: {ws}/{proj}/v{ver}")) if not dataset_info: msg = "No datasets loaded.\n" + "\n".join([f"- {u}: {why}" for u, why in failures[:10]]) raise gr.Error(msg) all_names = sorted({str(n) for _, names, _, _ in dataset_info for n in names}) class_map = {name: name for name in all_names} counts = gather_class_counts(dataset_info, class_map) df = pd.DataFrame([[n, n, counts.get(n, 0), False] for n in all_names], columns=["Original Name", "Rename To", "Max Images", "Remove"]) status = "Datasets loaded successfully." if failures: status += f" ({len(dataset_info)} OK, {len(failures)} failed; see logs)." return status, dataset_info, df def update_class_counts_handler(class_df, dataset_info): if class_df is None or not dataset_info: return None class_df = pd.DataFrame(class_df) mapping = {row["Original Name"]: (None if bool(row["Remove"]) else row["Rename To"]) for _, row in class_df.iterrows()} final_names = sorted(set(v for v in mapping.values() if v)) counts = {k: 0 for k in final_names} for loc, names, splits, _ in dataset_info: id_to_final = {idx: mapping.get(n, None) for idx, n in enumerate(names)} for split in splits: labels_dir = os.path.join(loc, split, 'labels') if not os.path.exists(labels_dir): continue for label_file in os.listdir(labels_dir): if not label_file.endswith('.txt'): continue found = set() with open(os.path.join(labels_dir, label_file), 'r', encoding="utf-8") as f: for line in f: parts = line.strip().split() if not parts: continue try: cls_id = int(parts[0]) mapped = id_to_final.get(cls_id, None) if mapped: found.add(mapped) except Exception: continue for m in found: counts[m] += 1 return pd.DataFrame(list(counts.items()), columns=["Final Class Name", "Est. Total Images"]) def training_handler(dataset_path, model_key, run_name, epochs, batch, imgsz, lr, opt, progress=gr.Progress()): if not dataset_path: raise gr.Error("Finalize a dataset in Tab 2 before training.") train_script = find_training_script(REPO_DIR) logging.info(f"Resolved training script: {train_script}") if not train_script: raise gr.Error("RT-DETRv2 training script not found inside the repo (looked for **/tools/train.py).") base_cfg = find_model_config_template(model_key) if not base_cfg: raise gr.Error("Could not find a matching RT-DETRv2 config in the repo (S/M/M*/L/X).") data_yaml = os.path.join(dataset_path, "data.yaml") with open(data_yaml, "r", encoding="utf-8") as f: dy = yaml.safe_load(f) class_names = [str(x) for x in dy.get("names", [])] make_coco_annotations(dataset_path, class_names) out_dir = os.path.abspath(os.path.join("runs", "train", run_name)) os.makedirs(out_dir, exist_ok=True) pretrained_path = _ensure_checkpoint(model_key, out_dir) cfg_path = patch_base_config( base_cfg_path=base_cfg, merged_dir=dataset_path, class_count=len(class_names), run_name=run_name, epochs=epochs, batch=batch, imgsz=imgsz, lr=lr, optimizer=opt, pretrained_path=pretrained_path, ) cmd = [sys.executable, train_script, "-c", os.path.abspath(cfg_path)] logging.info(f"Training command: {' '.join(cmd)}") q = Queue() def run_train(): try: train_cwd = os.path.dirname(train_script) shim_dir = tempfile.mkdtemp(prefix="rtdetr_site_") _install_workspace_shim_v3(shim_dir, module_default="rtdetrv2_pytorch.src") env = os.environ.copy() sly_shim_root = _install_supervisely_logger_shim() env["PYTHONPATH"] = os.pathsep.join(filter(None, [ shim_dir, train_cwd, PY_IMPL_DIR, REPO_DIR, sly_shim_root, env.get("PYTHONPATH", "") ])) env.setdefault("WANDB_DISABLED", "true") env.setdefault("RTDETR_PYMODULE", "rtdetrv2_pytorch.src") env.setdefault("PYTHONUNBUFFERED", "1") if torch.cuda.is_available(): env.setdefault("CUDA_VISIBLE_DEVICES", "0") proc = subprocess.Popen(cmd, cwd=train_cwd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, text=True, env=env) for line in proc.stdout: q.put(line.rstrip()) proc.wait() q.put(f"__EXITCODE__:{proc.returncode}") except Exception as e: q.put(f"__ERROR__:{e}") Thread(target=run_train, daemon=True).start() log_tail, last_epoch, total_epochs = [], 0, int(epochs) first_lines = [] line_no = 0 while True: line = q.get() if line.startswith("__EXITCODE__"): code = int(line.split(":", 1)[1]) if code != 0: head = "\n".join(first_lines[-200:]) raise gr.Error(f"Training exited with code {code}.\nLast output:\n{head or 'No logs captured.'}") break if line.startswith("__ERROR__"): raise gr.Error(f"Training failed: {line.split(':', 1)[1]}") if len(first_lines) < 2000: first_lines.append(line) log_tail.append(line) log_tail = log_tail[-40:] m = re.search(r"[Ee]poch\s+(\d+)\s*/\s*(\d+)", line) if m: try: last_epoch = int(m.group(1)) total_epochs = max(total_epochs, int(m.group(2))) except Exception: pass progress(min(max(last_epoch / max(1, total_epochs), 0.0), 1.0), desc=f"Epoch {last_epoch}/{total_epochs}") line_no += 1 fig1 = fig2 = None if line_no % 80 == 0: fig1 = plt.figure() plt.title("Loss (see logs)") plt.plot([0, last_epoch], [0, 0]) plt.tight_layout() fig2 = plt.figure() plt.title("mAP (see logs)") plt.plot([0, last_epoch], [0, 0]) plt.tight_layout() yield "\n".join(log_tail), fig1, fig2, None if fig1 is not None: plt.close(fig1) if fig2 is not None: plt.close(fig2) ckpt = find_best_checkpoint(out_dir) or find_best_checkpoint("runs") if not ckpt or not os.path.exists(ckpt): raise gr.Error("Training finished, but checkpoint file not found. Check logs/output directory.") yield "Training complete!", None, None, gr.File.update(value=ckpt, visible=True) def finalize_handler(dataset_info, class_df, progress=gr.Progress()): if not dataset_info: raise gr.Error("Load datasets first in Tab 1.") if class_df is None: raise gr.Error("Class data is missing.") class_df = pd.DataFrame(class_df) class_mapping, class_limits = {}, {} for _, row in class_df.iterrows(): orig = row["Original Name"] if bool(row["Remove"]): continue final_name = row["Rename To"] class_mapping[orig] = final_name class_limits[final_name] = class_limits.get(final_name, 0) + int(row["Max Images"]) status, path = finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress) return status, path def upload_handler(model_file, hf_token, hf_repo, gh_token, gh_repo, progress=gr.Progress()): if not model_file: raise gr.Error("No trained model file to upload.") from huggingface_hub import HfApi, HfFolder hf_status = "Skipped Hugging Face." if hf_token and hf_repo: progress(0, desc="Uploading to Hugging Face...") try: api = HfApi(); HfFolder.save_token(hf_token) repo_url = api.create_repo(repo_id=hf_repo, exist_ok=True, token=hf_token) api.upload_file(model_file.name, os.path.basename(model_file.name), repo_id=hf_repo, token=hf_token) hf_status = f"Success! {repo_url}" except Exception as e: hf_status = f"Hugging Face Error: {e}" gh_status = "Skipped GitHub." if gh_token and gh_repo: progress(0.5, desc="Uploading to GitHub...") try: if '/' not in gh_repo: raise ValueError("GitHub repo must be 'username/repo'.") username, repo_name = gh_repo.split('/') api_url = f"https://api.github.com/repos/{username}/{repo_name}/contents/{os.path.basename(model_file.name)}" headers = {"Authorization": f"token {gh_token}"} with open(model_file.name, "rb") as f: content = base64.b64encode(f.read()).decode() get_resp = requests.get(api_url, headers=headers, timeout=30) sha = get_resp.json().get('sha') if get_resp.ok else None data = {"message": "Upload trained model from Rolo app", "content": content} if sha: data["sha"] = sha put_resp = requests.put(api_url, headers=headers, json=data, timeout=60) if put_resp.ok: gh_status = f"Success! {put_resp.json()['content']['html_url']}" else: gh_status = f"GitHub Error: {put_resp.json().get('message','Unknown')}" except Exception as e: gh_status = f"GitHub Error: {e}" progress(1) return hf_status, gh_status # === UI ======================================================================= with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app: gr.Markdown("# Rolo — RT-DETRv2 Trainer (Supervisely repo only)") dataset_info_state = gr.State([]) final_dataset_path_state = gr.State(None) with gr.Tabs(): with gr.TabItem("1. Prepare Datasets"): gr.Markdown("Upload a `.txt` with Roboflow URLs or `workspace/project[/vN]` per line. We’ll pull and merge them.") with gr.Row(): rf_api_key = gr.Textbox(label="Roboflow API Key (or set ROBOFLOW_API_KEY)", type="password", scale=2) rf_url_file = gr.File(label="Roboflow URLs (.txt)", file_types=[".txt"], scale=1) load_btn = gr.Button("Load Datasets", variant="primary") dataset_status = gr.Textbox(label="Status", interactive=False) with gr.TabItem("2. Manage & Merge"): gr.Markdown("Rename/merge/remove classes and set per-class image caps. Then finalize.") with gr.Row(): class_df = gr.DataFrame(headers=["Original Name","Rename To","Max Images","Remove"], datatype=["str","str","number","bool"], label="Class Config", interactive=True, scale=3) with gr.Column(scale=1): class_count_summary_df = gr.DataFrame(label="Merged Class Counts Preview", headers=["Final Class Name","Est. Total Images"], interactive=False) update_counts_btn = gr.Button("Update Counts") finalize_btn = gr.Button("Finalize Merged Dataset", variant="primary") finalize_status = gr.Textbox(label="Status", interactive=False) with gr.TabItem("3. Configure & Train"): gr.Markdown("Pick RT-DETRv2 model, set hyper-params, press Start.") with gr.Row(): with gr.Column(scale=1): # [UI IMPROVEMENT] Using (label, value) format for a better user experience model_dd = gr.Dropdown(choices=[(label, value) for value, label in MODEL_CHOICES], value=DEFAULT_MODEL_KEY, label="Model (RT-DETRv2)") run_name_tb = gr.Textbox(label="Run Name", value="rtdetrv2_run_1") epochs_sl = gr.Slider(1, 500, 100, step=1, label="Epochs") batch_sl = gr.Slider(1, 64, 16, step=1, label="Batch Size") imgsz_num = gr.Number(label="Image Size", value=640) lr_num = gr.Number(label="Learning Rate", value=0.001) opt_dd = gr.Dropdown(["Adam","AdamW","SGD"], value="Adam", label="Optimizer") train_btn = gr.Button("Start Training", variant="primary") with gr.Column(scale=2): train_status = gr.Textbox(label="Live Logs (tail)", interactive=False, lines=12) loss_plot = gr.Plot(label="Loss") map_plot = gr.Plot(label="mAP") final_model_file = gr.File(label="Download Trained Checkpoint", interactive=False, visible=False) with gr.TabItem("4. Upload Model"): gr.Markdown("Optionally push your checkpoint to Hugging Face / GitHub.") with gr.Row(): with gr.Column(): gr.Markdown("**Hugging Face**") hf_token = gr.Textbox(label="HF Token", type="password") hf_repo = gr.Textbox(label="HF Repo (user/repo)") with gr.Column(): gr.Markdown("**GitHub**") gh_token = gr.Textbox(label="GitHub PAT", type="password") gh_repo = gr.Textbox(label="GitHub Repo (user/repo)") upload_btn = gr.Button("Upload", variant="primary") with gr.Row(): hf_status = gr.Textbox(label="Hugging Face Status", interactive=False) gh_status = gr.Textbox(label="GitHub Status", interactive=False) load_btn.click(load_datasets_handler, [rf_api_key, rf_url_file], [dataset_status, dataset_info_state, class_df]) update_counts_btn.click(update_class_counts_handler, [class_df, dataset_info_state], [class_count_summary_df]) finalize_btn.click(finalize_handler, [dataset_info_state, class_df], [finalize_status, final_dataset_path_state]) train_btn.click(training_handler, [final_dataset_path_state, model_dd, run_name_tb, epochs_sl, batch_sl, imgsz_num, lr_num, opt_dd], [train_status, loss_plot, map_plot, final_model_file]) upload_btn.click(upload_handler, [final_model_file, hf_token, hf_repo, gh_token, gh_repo], [hf_status, gh_status]) if __name__ == "__main__": try: ts = find_training_script(REPO_DIR) logging.info(f"Startup check — training script at: {ts}") except Exception as e: logging.warning(f"Startup training-script check failed: {e}") app.launch(debug=True)