import os # Redis configuration #REDIS_HOST = os.getenv('REDIS_HOST', 'redis') REDIS_HOST = os.getenv('REDIS_HOST', '0.0.0.0') REDIS_PORT = int(os.getenv('REDIS_PORT', 6379)) REDIS_DB = int(os.getenv('REDIS_DB', 0)) # Model and embedding configuration #MODEL_NAME = os.getenv('MODEL_NAME', "intfloat/multilingual-e5-large-instruct") MODEL_NAME = os.getenv('MODEL_NAME', "wt3639/EduGBERT_CourseRec") ENCODE_KWARGS = { 'normalize_embeddings': os.getenv('NORMALIZE_EMBEDDINGS', 'True') == 'True', 'convert_to_tensor': os.getenv('CONVERT_TO_TENSOR', 'True') == 'True' } #QUERY_INSTRUCTION = os.getenv('QUERY_INSTRUCTION', 'Find the course that relates to the given occupation and cover the skills gap') QUERY_INSTRUCTION = os.getenv('QUERY_INSTRUCTION', '') # Other configurations TOP_K = int(os.getenv('TOP_K', 10)) #PERSIST_DIRECTORY = os.getenv('PERSIST_DIRECTORY', "/app/data/course_emb_db") PERSIST_DIRECTORY = os.getenv('PERSIST_DIRECTORY', "/app/data/BA_Udemy_Berufe") CSV_FILE_PATH = os.getenv('CSV_FILE_PATH', '/app/data/occupations_de.csv') REC_LORA_MODEL = os.getenv('REC_LORA_MODEL', 'wt3639/Llama-3-8B-Instruct_CourseRec_lora') EXP_LORA_MODEL = os.getenv('EXP_LORA_MODEL', 'wt3639/Lllama-3-8B-instruct-exp-adapter') LLM_MODEL = os.getenv('LLM_MODEL', 'meta-llama/Meta-Llama-3-8B-Instruct')