# agent.py import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.utilities import WikipediaAPIWrapper from langchain_community.document_loaders import ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client from sentence_transformers import SentenceTransformer from langchain.embeddings.base import Embeddings from typing import List import numpy as np import yaml import pandas as pd import uuid import requests import json from langchain_core.documents import Document from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from youtube_transcript_api import YouTubeTranscriptApi from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable import re from langchain_community.document_loaders import TextLoader, PyMuPDFLoader from docx import Document as DocxDocument import openpyxl from io import StringIO from transformers import BertTokenizer, BertModel import torch import torch.nn.functional as F from langchain_community.chat_models import ChatOpenAI from langchain_community.tools import Tool import time from huggingface_hub import InferenceClient from langchain_community.llms import HuggingFaceHub from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig from langchain_huggingface import HuggingFaceEndpoint #from langchain.agents import initialize_agent #from langchain.agents import AgentType from typing import Union, List from functools import reduce import operator from typing import Union from functools import reduce from youtube_transcript_api import YouTubeTranscriptApi from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable load_dotenv() @tool def calculator(inputs: Union[str, dict]): """ Perform mathematical operations based on the operation provided. Supports both binary (a, b) operations and list operations. """ # If input is a JSON string, parse it if isinstance(inputs, str): try: import json inputs = json.loads(inputs) except Exception as e: return f"Invalid input format: {e}" # Handle list-based operations like SUM if "list" in inputs: nums = inputs.get("list", []) op = inputs.get("operation", "").lower() if not isinstance(nums, list) or not all(isinstance(n, (int, float)) for n in nums): return "Invalid list input. Must be a list of numbers." if op == "sum": return sum(nums) elif op == "multiply": return reduce(operator.mul, nums, 1) else: return f"Unsupported list operation: {op}" # Handle basic two-number operations a = inputs.get("a") b = inputs.get("b") operation = inputs.get("operation", "").lower() if a is None or b is None or not isinstance(a, (int, float)) or not isinstance(b, (int, float)): return "Both 'a' and 'b' must be numbers." if operation == "add": return a + b elif operation == "subtract": return a - b elif operation == "multiply": return a * b elif operation == "divide": if b == 0: return "Error: Division by zero" return a / b elif operation == "modulus": return a % b else: return f"Unknown operation: {operation}" @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return up to 2 results.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return formatted_search_docs @tool def wikidata_query(query: str) -> str: """ Run a SPARQL query on Wikidata and return results. """ endpoint_url = "https://query.wikidata.org/sparql" headers = { "Accept": "application/sparql-results+json" } response = requests.get(endpoint_url, headers=headers, params={"query": query}) data = response.json() return json.dumps(data, indent=2) @tool def web_search(query: str) -> str: """Search Tavily for a query and return up to 3 results.""" tavily_key = os.getenv("TAVILY_API_KEY") if not tavily_key: return "Error: Tavily API key not set." search_tool = TavilySearchResults(tavily_api_key=tavily_key, max_results=3) search_docs = search_tool.invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return formatted_search_docs @tool def arxiv_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return formatted_search_docs @tool def analyze_attachment(file_path: str) -> str: """ Analyzes attachments including PY, PDF, TXT, DOCX, and XLSX files and returns text content. Args: file_path: Local path to the attachment. """ if not os.path.exists(file_path): return f"File not found: {file_path}" try: ext = file_path.lower() if ext.endswith(".pdf"): loader = PyMuPDFLoader(file_path) documents = loader.load() content = "\n\n".join([doc.page_content for doc in documents]) elif ext.endswith(".txt") or ext.endswith(".py"): # Both .txt and .py are plain text files with open(file_path, "r", encoding="utf-8") as file: content = file.read() elif ext.endswith(".docx"): doc = DocxDocument(file_path) content = "\n".join([para.text for para in doc.paragraphs]) elif ext.endswith(".xlsx"): wb = openpyxl.load_workbook(file_path, data_only=True) content = "" for sheet in wb: content += f"Sheet: {sheet.title}\n" for row in sheet.iter_rows(values_only=True): content += "\t".join([str(cell) if cell is not None else "" for cell in row]) + "\n" else: return "Unsupported file format. Please use PY, PDF, TXT, DOCX, or XLSX." return content[:3000] # Limit output size for readability except Exception as e: return f"An error occurred while processing the file: {str(e)}" @tool def get_youtube_transcript(url: str) -> str: """ Fetch transcript text from a YouTube video. Args: url (str): Full YouTube video URL. Returns: str: Transcript text as a single string. Raises: ValueError: If no transcript is available or URL is invalid. """ try: # Extract video ID video_id = extract_video_id(url) transcript = YouTubeTranscriptApi.get_transcript(video_id) # Combine all transcript text full_text = " ".join([entry['text'] for entry in transcript]) return full_text except (TranscriptsDisabled, VideoUnavailable) as e: raise ValueError(f"Transcript not available: {e}") except Exception as e: raise ValueError(f"Failed to fetch transcript: {e}") @tool def extract_video_id(url: str) -> str: """ Extract the video ID from a YouTube URL. """ match = re.search(r"(?:v=|youtu\.be/)([A-Za-z0-9_-]{11})", url) if not match: raise ValueError("Invalid YouTube URL") return match.group(1) # ----------------------------- # Load configuration from YAML # ----------------------------- with open("config.yaml", "r") as f: config = yaml.safe_load(f) provider = config["provider"] model_config = config["models"][provider] #prompt_path = config["system_prompt_path"] enabled_tool_names = config["tools"] # ----------------------------- # Load system prompt # ----------------------------- # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) # ----------------------------- # Map tool names to functions # ----------------------------- tool_map = { "math": calculator, "wiki_search": wiki_search, "web_search": web_search, "arxiv_search": arxiv_search, "get_youtube_transcript": get_youtube_transcript, "extract_video_id": extract_video_id, "analyze_attachment": analyze_attachment, "wikidata_query": wikidata_query } # Then define which tools you want enabled enabled_tool_names = [ "math", "wiki_search", "web_search", "arxiv_search", "get_youtube_transcript", "extract_video_id", "analyze_attachment", "wikidata_query" ] tools = [tool_map[name] for name in enabled_tool_names] # Safe version tools = [] for name in enabled_tool_names: if name not in tool_map: print(f"❌ Tool not found: {name}") continue tools.append(tool_map[name]) # ------------------------------- # Step 2: Load the JSON file or tasks (Replace this part if you're loading tasks dynamically) # ------------------------------- from fastapi import FastAPI, Request from langchain_core.documents import Document import uuid app = FastAPI() @app.post("/start") async def start_questions(request: Request): data = await request.json() questions = data.get("questions", []) docs = [] for task in questions: question_text = task.get("question", "").strip() if not question_text: continue task["id"] = str(uuid.uuid4()) docs.append(Document(page_content=question_text, metadata=task)) return {"message": f"Loaded {len(docs)} questions", "docs": [doc.page_content for doc in docs]} # ------------------------------- # Step 4: Set up BERT Embeddings and FAISS VectorStore # ------------------------------- # ----------------------------- # 1. Define Custom BERT Embedding Model # ----------------------------- class BERTEmbeddings(Embeddings): def __init__(self, model_name='bert-base-uncased'): self.tokenizer = BertTokenizer.from_pretrained(model_name) self.model = BertModel.from_pretrained(model_name) self.model.eval() # Set model to eval mode def embed_documents(self, texts): inputs = self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True) with torch.no_grad(): outputs = self.model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1) embeddings = F.normalize(embeddings, p=2, dim=1) # Normalize for cosine similarity return embeddings.cpu().numpy() def embed_query(self, text): return self.embed_documents([text])[0] # ----------------------------- # 2. Initialize Embedding Model # ----------------------------- embedding_model = BERTEmbeddings() # ----------------------------- # 3. Prepare Documents # ----------------------------- docs = [ Document(page_content="Mercedes Sosa released many albums between 2000 and 2009.", metadata={"id": 1}), Document(page_content="She was a prominent Argentine folk singer.", metadata={"id": 2}), Document(page_content="Her album 'Al Despertar' was released in 1998.", metadata={"id": 3}), Document(page_content="She continued releasing music well into the 2000s.", metadata={"id": 4}), ] # ----------------------------- # 4. Create FAISS Vector Store # ----------------------------- vector_store = FAISS.from_documents(docs, embedding_model) vector_store.save_local("faiss_index") # ----------------------------- # 6. Create LangChain Retriever Tool # ----------------------------- retriever = vector_store.as_retriever() question_retriever_tool = create_retriever_tool( retriever=retriever, name="Question_Search", description="A tool to retrieve documents related to a user's question." ) # Define the LLM before using it #llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") # or "gpt-3.5-turbo" "gpt-4" #llm = ChatMistralAI(model="mistral-7b-instruct-v0.1") # Get the Hugging Face API token from the environment variable #hf_token = os.getenv("HF_TOKEN") llm = HuggingFaceEndpoint( repo_id="HuggingFaceH4/zephyr-7b-beta", task="text-generation", huggingfacehub_api_token=os.getenv("HF_TOKEN"), temperature=0.7, max_new_tokens=512 ) # No longer required as Langgraph is replacing Langchain # Initialize LangChain agent #agent = initialize_agent( # tools=tools, # llm=llm, # agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, # verbose=True #) # ------------------------------- # Step 8: Use the Planner, Classifier, and Decision Logic # ------------------------------- def process_question(question): # Step 1: Planner generates the task sequence tasks = planner(question) print(f"Tasks to perform: {tasks}") # Step 2: Classify the task (based on question) task_type = task_classifier(question) print(f"Task type: {task_type}") # Step 3: Use the classifier and planner to decide on the next task or node state = {"question": question, "last_response": ""} next_task = decide_task(state) print(f"Next task: {next_task}") # Step 4: Use node skipper logic (skip if needed) skip = node_skipper(state) if skip: print(f"Skipping to {skip}") return skip # Or move directly to generating answer # Step 5: Execute task (with error handling) try: if task_type == "wiki_search": response = wiki_search(question) elif task_type == "math": response = calculator(question) else: response = "Default answer logic" # Step 6: Final response formatting final_response = final_answer_tool(state, {'wiki_search': response}) return final_response except Exception as e: print(f"Error executing task: {e}") return "Sorry, I encountered an error processing your request." # Run the process #question = "How many albums did Mercedes Sosa release between 2000 and 2009?" #response = agent.invoke(question) #print("Final Response:", response) def retriever(state: MessagesState): """Retriever node using similarity scores for filtering""" query = state["messages"][0].content results = vector_store.similarity_search_with_score(query, k=4) # top 4 matches # Dynamically adjust threshold based on query complexity threshold = 0.75 if "who" in query else 0.8 filtered = [doc for doc, score in results if score < threshold] # Provide a default message if no documents found if not filtered: example_msg = HumanMessage(content="No relevant documents found.") else: content = "\n\n".join(doc.page_content for doc in filtered) example_msg = HumanMessage( content=f"Here are relevant reference documents:\n\n{content}" ) return {"messages": [sys_msg] + state["messages"] + [example_msg]} # ---------------------------------------------------------------- # LLM Loader # ---------------------------------------------------------------- def get_llm(provider: str, config: dict): if provider == "google": from langchain_google_genai import ChatGoogleGenerativeAI return ChatGoogleGenerativeAI(model=config["model"], temperature=config["temperature"]) elif provider == "groq": from langchain_groq import ChatGroq return ChatGroq(model=config["model"], temperature=config["temperature"]) elif provider == "huggingface": from langchain_huggingface import ChatHuggingFace from langchain_huggingface import HuggingFaceEndpoint return ChatHuggingFace( llm=HuggingFaceEndpoint(url=config["url"], temperature=config["temperature"]) ) else: raise ValueError(f"Invalid provider: {provider}") # ---------------------------------------------------------------- # Planning & Execution Logic # ---------------------------------------------------------------- def planner(question: str, tools: list) -> tuple: """ Select the best-matching tool(s) for a question based on keyword-based intent detection and tool metadata. Returns the detected intent and matched tools. """ question = question.lower().strip() # Define intent-based keywords intent_keywords = { "math": ["calculate", "evaluate", "add", "subtract", "multiply", "divide", "modulus", "plus", "minus", "times"], "wiki_search": ["who is", "what is", "define", "explain", "tell me about", "overview of"], "web_search": ["search", "find", "look up", "google", "latest news", "current info"], "arxiv_search": ["arxiv", "research paper", "scientific paper", "preprint"], "get_youtube_transcript": ["youtube", "watch", "play video", "show me a video"], "extract_video_id": ["analyze video", "summarize video", "video content"], "data_analysis": ["analyze", "plot", "graph", "data", "visualize"], "wikidata_query": ["wikidata", "sparql", "run sparql", "query wikidata"], "default": ["why", "how", "difference between", "compare", "what happens", "reason for", "cause of", "effect of"] } # Step 1: Identify intent detected_intent = None for intent, keywords in intent_keywords.items(): if any(keyword in question for keyword in keywords): detected_intent = intent break # Step 2: Match tools by intent matched_tools = [] if detected_intent: for tool in tools: name = getattr(tool, "name", "").lower() description = getattr(tool, "description", "").lower() if detected_intent in name or detected_intent in description: matched_tools.append(tool) # Step 3: Fallback to general-purpose/default tools if no match found if not matched_tools: matched_tools = [ tool for tool in tools if "default" in getattr(tool, "name", "").lower() or "qa" in getattr(tool, "description", "").lower() ] return detected_intent, matched_tools if matched_tools else [tools[0]] import json def task_classifier(question: str) -> str: """ Classifies the question into one of the predefined task categories. """ question = question.lower().strip() # Context-aware intent patterns if any(phrase in question for phrase in [ "calculate", "how much is", "what is the result of", "evaluate", "solve" ]) or any(op in question for op in ["add", "subtract", "multiply", "divide", "modulus", "plus", "minus", "times"]): return "math" elif any(phrase in question for phrase in [ "who is", "what is", "define", "explain", "tell me about", "give me an overview of" ]): return "wiki_search" elif any(phrase in question for phrase in [ "search", "find", "look up", "google", "get the latest", "current news", "trending" ]): return "web_search" elif any(phrase in question for phrase in [ "arxiv", "latest research", "scientific paper", "research paper", "preprint" ]): return "arxiv_search" elif any(phrase in question for phrase in [ "youtube", "watch", "play the video", "show me a video" ]): return "get_youtube_transcript" elif any(phrase in question for phrase in [ "analyze video", "summarize video", "what happens in the video", "video content" ]): return "video_analysis" elif any(phrase in question for phrase in [ "analyze", "visualize", "plot", "graph", "inspect data", "explore dataset" ]): return "data_analysis" elif any(phrase in question for phrase in [ "sparql", "wikidata", "query wikidata", "run sparql", "wikidata query" ]): return "wikidata_query" return "default" def select_tool_and_run(question: str, tools: dict): # Step 1: Classify intent intent = task_classifier(question) # assuming task_classifier maps the question to intent # Map intent to tool names intent_tool_map = { "math": "calculator", # maps to tools["math"] → calculator "wiki_search": "wiki_search", # → wiki_search "web_search": "web_search", # → web_search "arxiv_search": "arxiv_search", # → arxiv_search (spelling fixed) "get_youtube_transcript": "get_youtube_transcript", # → get_youtube_transcript "extract_video_id": "extract_video_id", # adjust based on your tools "analyze_attachment": "analyze_attachment", # assuming analyze_attachment handles this "wikidata_query": "wikidata_query", # → wikidata_query "default": "default" # → default_tool } # Get the corresponding tool name tool_name = intent_tool_map.get(intent, "default") # Default to "default" if no match # Retrieve the tool from the tools dictionary tool_func = tools.get(tool_name) if not tool_func: return f"Tool not found for intent '{intent}'" # Step 2: Run the tool try: # If the tool needs JSON or structured data try: parsed_input = json.loads(question) except json.JSONDecodeError: parsed_input = question # fallback to raw input if not JSON # Run the selected tool print(f"Running tool: {tool_name} with input: {parsed_input}") # log the tool name and input return tool_func(parsed_input) except Exception as e: return f"Error while running tool '{tool_name}': {str(e)}" # Function to extract math operation from the question def extract_math_from_question(question: str): question = question.lower() # Map natural language to symbols ops = { "add": "+", "plus": "+", "subtract": "-", "minus": "-", "multiply": "*", "times": "*", "divide": "/", "divided by": "/", "modulus": "%", "mod": "%" } for word, symbol in ops.items(): question = re.sub(rf"\b{word}\b", symbol, question) # Extract math expression like "12 + 5" match = re.search(r'(\d+)\s*([\+\-\*/%])\s*(\d+)', question) if match: num1 = int(match.group(1)) operator = match.group(2) num2 = int(match.group(3)) return { "a": num1, "b": num2, "operation": { "+": "add", "-": "subtract", "*": "multiply", "/": "divide", "%": "modulus" }[operator] } return None # Example tool set (adjust these to match your actual tool names) intent_tool_map = { "math": "math", # maps to tools["math"] → calculator "wiki_search": "wiki_search", # → wiki_search "web_search": "web_search", # → web_search "arxiv_search": "arxiv_search", # → arxiv_search (spelling fixed) "get_youtube_transcript": "get_youtube_transcript", # → get_youtube_transcript "extract_video_id": "extract_video_id", # adjust based on your tools "analyze_attachment": "analyze_attachment", # assuming analyze_attachment handles this "wikidata_query": "wikidata_query", # → wikidata_query "default": "default" # → default_tool } # The task order can also include the tools for each task priority_order = [ {"task": "math", "tool": "math"}, {"task": "wiki_search", "tool": "wiki_search"}, {"task": "web_search", "tool": "web_search"}, {"task": "arxiv_search", "tool": "arxiv_search"}, {"task": "wikidata_query", "tool": "wikidata_query"}, {"task": "retriever", "tool": "retriever"}, {"task": "get_youtube_transcript", "tool": "get_youtube_transcript"}, {"task": "extract_video_id", "tool": "extract_video_id"}, {"task": "analyze_attachment", "tool": "analyze_attachment"}, {"task": "default", "tool": "default"} # Fallback ] def decide_task(state: dict) -> str: """Decides which task to perform based on the current state.""" # Get the list of tasks from the planner tasks = planner(state["question"]) print(f"Available tasks: {tasks}") # Debugging: show all possible tasks # Check if the tasks list is empty or invalid if not tasks: print("❌ No valid tasks were returned from the planner.") return "default" # Return a default task if no tasks were generated # If there are multiple tasks, we can prioritize based on certain conditions task = tasks[0] # Default to the first task in the list if len(tasks) > 1: print(f"⚠️ Multiple tasks found. Deciding based on priority.") # Example logic to prioritize tasks, adjust based on your use case task = prioritize_tasks(tasks) print(f"Decided on task: {task}") # Debugging: show the final task return task def prioritize_tasks(tasks: list) -> str: """Prioritize tasks based on certain conditions or criteria, including tools.""" # Sort tasks based on priority_order mapping for priority in priority_order: # Check if any task matches the priority task type for task in tasks: if priority["task"] in task: print(f"✅ Prioritizing task: {task} with tool: {priority['tool']}") # Debugging: show the chosen task and tool # Assign the correct tool based on the task tool = tools.get(priority["tool"], tools["default"]) # Default to 'default_tool' if not found return task, tool # If no priority task is found, return the first task with its default tool return tasks[0], tools["default"] def process_question(question: str): """Process the question and route it to the appropriate tool.""" # Get the tasks from the planner tasks = planner(question) print(f"Tasks to perform: {tasks}") task_type, tool = decide_task({"question": question}) print(f"Next task: {task_type} with tool: {tool}") if node_skipper({"question": question}): print(f"Skipping task: {task_type}") return "Task skipped." try: # Execute the corresponding tool for the task type if task_type == "wiki_search": response = tool.run(question) # Assuming tool is wiki_tool elif task_type == "math": response = tool.run(question) # Assuming tool is calc_tool elif task_type == "retriever": response = tool.run(question) # Assuming tool is retriever_tool else: response = tool.run(question) # Default tool return generate_final_answer({"question": question}, {task_type: response}) except Exception as e: print(f"❌ Error: {e}") return f"Sorry, I encountered an error: {str(e)}" def call_llm(state): messages = state["messages"] response = llm.invoke(messages) return {"messages": messages + [response]} tool_node = ToolNode(tools) from langgraph.graph import StateGraph from typing import TypedDict class InputSchema(TypedDict): question: str class OutputSchema(TypedDict): answer: str builder = StateGraph(input_schema=InputSchema, output_schema=OutputSchema) builder.add_node("call_llm", call_llm) builder.add_node("call_tool", tool_node) # Decide what to do next: if tool call → call_tool, else → end def should_call_tool(state): last_msg = state["messages"][-1] if isinstance(last_msg, AIMessage) and last_msg.tool_calls: return "call_tool" return "end" builder.set_entry_point("call_llm") builder.add_conditional_edges("call_llm", should_call_tool, { "call_tool": "call_tool", "end": None }) # After tool runs, go back to the LLM builder.add_edge("call_tool", "call_llm") # To store previously asked questions and timestamps (simulating state persistence) recent_questions = {} def node_skipper(state: dict) -> bool: """ Determines whether to skip the task based on the state. This could include: 1. Repeated or similar questions 2. Irrelevant or empty questions 3. Tasks that have already been processed recently """ question = state.get("question", "").strip() if not question: print("❌ Skipping: Empty or invalid question.") return True # Skip if no valid question # 1. Skip if the question has already been asked recently (within a given time window) # Here, we're using a simple example with a 5-minute window (300 seconds). if question in recent_questions: last_asked_time = recent_questions[question] time_since_last_ask = time.time() - last_asked_time if time_since_last_ask < 300: # 5-minute threshold print(f"❌ Skipping: The question has been asked recently. Time since last ask: {time_since_last_ask:.2f} seconds.") return True # Skip if the question was asked within the last 5 minutes # 2. Skip if the question is irrelevant or not meaningful enough irrelevant_keywords = ["blah", "nothing", "invalid", "nonsense"] if any(keyword in question.lower() for keyword in irrelevant_keywords): print("❌ Skipping: Irrelevant or nonsense question.") return True # Skip if the question contains irrelevant keywords # 3. Skip if the task has already been completed for this question (based on a unique task identifier) if "last_response" in state and state["last_response"]: print("❌ Skipping: Task has already been processed recently.") return True # Skip if a response has already been given # 4. Skip based on a condition related to the task itself # Example: Skip math-related tasks if the result is already known or trivial if "math" in state.get("question", "").lower(): # If math is trivial (like "What is 2+2?") trivial_math = ["2 + 2", "1 + 1", "3 + 3"] if any(trivial_question in question for trivial_question in trivial_math): print(f"❌ Skipping trivial math question: {question}") return True # Skip if the math question is trivial # 5. Skip based on external factors (e.g., current time, system load, etc.) # Example: Avoid processing tasks at night if that's part of the business logic current_hour = time.localtime().tm_hour if current_hour >= 22 or current_hour < 6: print("❌ Skipping: It's night time, not processing tasks.") return True # Skip tasks during night time (e.g., between 10 PM and 6 AM) # If none of the conditions matched, don't skip the task return False # Update recent questions (for simulating repeated question check) def update_recent_questions(question: str): """Update the recent questions dictionary with the current timestamp.""" recent_questions[question] = time.time() def generate_final_answer(state: dict, task_results: dict) -> str: """Generate a final answer based on the results of the task.""" if "wiki_search" in task_results: return f"📚 Wiki Summary:\n{task_results['wiki_search']}" elif "math" in task_results: return f"🧮 Math Result: {task_results['math']}" elif "retriever" in task_results: return f"🔍 Retrieved Info: {task_results['retriever']}" else: return "🤖 Unable to generate a specific answer." def answer_question(question: str) -> str: """Process a single question and return the answer.""" print(f"Processing question: {question[:50]}...") # Debugging: show first 50 chars # Wrap the question in a HumanMessage from langchain_core (assuming langchain is used) messages = [HumanMessage(content=question)] response = graph.invoke({"messages": messages}) # Assuming `graph` is defined elsewhere # Extract the answer from the response answer = response['messages'][-1].content return answer[14:] # Assuming 'answer[14:]' is correct based on your example def process_all_tasks(tasks: list): """Process a list of tasks.""" results = {} for task in tasks: question = task.get("question", "").strip() if not question: print(f"Skipping task with missing or empty 'question': {task}") continue print(f"\n🟢 Processing Task: {task['task_id']} - Question: {question}") # Call the existing process_question logic response = process_question(question) print(f"✅ Response: {response}") results[task['task_id']] = response return results ## Langgraph # Build graph function provider = "huggingface" model_config = { "repo_id": "HuggingFaceH4/zephyr-7b-beta", "task": "text-generation", "temperature": 0.7, "max_new_tokens": 512, "huggingfacehub_api_token": os.getenv("HF_TOKEN") } def build_graph(provider, model_config): from langchain_core.messages import SystemMessage, HumanMessage from langgraph.graph import StateGraph, ToolNode from langchain_core.runnables import RunnableLambda from some_module import vector_store # Make sure this is defined/imported # Step 1: Get LLM def get_llm(provider: str, config: dict): if provider == "huggingface": from langchain_huggingface import HuggingFaceEndpoint return HuggingFaceEndpoint( repo_id=config["repo_id"], task=config["task"], huggingfacehub_api_token=config["huggingfacehub_api_token"], temperature=config["temperature"], max_new_tokens=config["max_new_tokens"] ) else: raise ValueError(f"Unsupported provider: {provider}") llm = get_llm(provider, model_config) # Step 2: Define tools tools = [ wiki_search, calculator, web_search, arxiv_search, get_youtube_transcript, extract_video_id, analyze_attachment, wikidata_query ] # Step 3: Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Step 4: Build stateful graph logic sys_msg = SystemMessage(content="You are a helpful assistant.") def retriever(state: dict): user_query = state["messages"][0].content similar_docs = vector_store.similarity_search(user_query) if not similar_docs: wiki_result = wiki_search.run(user_query) return { "messages": [ sys_msg, state["messages"][0], HumanMessage(content=f"Using Wikipedia search:\n\n{wiki_result}") ] } else: return { "messages": [ sys_msg, state["messages"][0], HumanMessage(content=f"Reference:\n\n{similar_docs[0].page_content}") ] } def assistant(state: dict): return {"messages": [llm_with_tools.invoke(state["messages"])]} def tools_condition(state: dict) -> str: if "use tool" in state["messages"][-1].content.lower(): return "tools" else: return "END" # Step 5: Define LangGraph StateGraph builder = StateGraph(dict) # Using dict as state type here builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.set_entry_point("retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") graph = builder.compile() return graph # call build_graph AFTER it’s defined agent = build_graph(provider, model_config) # Now you can use the agent like this: result = agent.invoke({"messages": [HumanMessage(content=question)]})