import copy import os import random import numpy as np import torch def enable_full_determinism(seed: int): """ Helper function for reproducible behavior during distributed training. See - https://pytorch.org/docs/stable/notes/randomness.html for pytorch """ # set seed first set_seed(seed) # Enable PyTorch deterministic mode. This potentially requires either the environment # variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set, # depending on the CUDA version, so we set them both here os.environ["CUDA_LAUNCH_BLOCKING"] = "1" os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8" torch.use_deterministic_algorithms(True) # Enable CUDNN deterministic mode torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def set_seed(seed: int): """ Args: Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`. seed (`int`): The seed to set. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # ^^ safe to call this function even if cuda is not available class EMAModel: """ Exponential Moving Average of models weights """ def __init__( self, model, update_after_step=0, inv_gamma=1.0, power=2 / 3, min_value=0.0, max_value=0.9999, device=None, ): """ @crowsonkb's notes on EMA Warmup: If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at 215.4k steps). Args: inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1. power (float): Exponential factor of EMA warmup. Default: 2/3. min_value (float): The minimum EMA decay rate. Default: 0. """ self.averaged_model = copy.deepcopy(model).eval() self.averaged_model.requires_grad_(False) self.update_after_step = update_after_step self.inv_gamma = inv_gamma self.power = power self.min_value = min_value self.max_value = max_value if device is not None: self.averaged_model = self.averaged_model.to(device=device) self.decay = 0.0 self.optimization_step = 0 def get_decay(self, optimization_step): """ Compute the decay factor for the exponential moving average. """ step = max(0, optimization_step - self.update_after_step - 1) value = 1 - (1 + step / self.inv_gamma) ** -self.power if step <= 0: return 0.0 return max(self.min_value, min(value, self.max_value)) @torch.no_grad() def step(self, new_model): ema_state_dict = {} ema_params = self.averaged_model.state_dict() self.decay = self.get_decay(self.optimization_step) for key, param in new_model.named_parameters(): if isinstance(param, dict): continue try: ema_param = ema_params[key] except KeyError: ema_param = param.float().clone() if param.ndim == 1 else copy.deepcopy(param) ema_params[key] = ema_param if not param.requires_grad: ema_params[key].copy_(param.to(dtype=ema_param.dtype).data) ema_param = ema_params[key] else: ema_param.mul_(self.decay) ema_param.add_(param.data.to(dtype=ema_param.dtype), alpha=1 - self.decay) ema_state_dict[key] = ema_param for key, param in new_model.named_buffers(): ema_state_dict[key] = param self.averaged_model.load_state_dict(ema_state_dict, strict=False) self.optimization_step += 1