""" This module is responsible for handling the animation of faces using a combination of deep learning models and image processing techniques. It provides a pipeline to generate realistic face animations by incorporating user-provided conditions such as facial expressions and environments. The module utilizes various schedulers and utilities to optimize the animation process and ensure efficient performance. Functions and Classes: - StaticPipelineOutput: A class that represents the output of the animation pipeline, c ontaining properties and methods related to the generated images. - prepare_latents: A function that prepares the initial noise for the animation process, scaling it according to the scheduler's requirements. - prepare_condition: A function that processes the user-provided conditions (e.g., facial expressions) and prepares them for use in the animation pipeline. - decode_latents: A function that decodes the latent representations of the face animations into their corresponding image formats. - prepare_extra_step_kwargs: A function that prepares additional parameters for each step of the animation process, such as the generator and eta values. Dependencies: - numpy: A library for numerical computing. - torch: A machine learning library based on PyTorch. - diffusers: A library for image-to-image diffusion models. - transformers: A library for pre-trained transformer models. Usage: - To create an instance of the animation pipeline, provide the necessary components such as the VAE, reference UNET, denoising UNET, face locator, and image processor. - Use the pipeline's methods to prepare the latents, conditions, and extra step arguments as required for the animation process. - Generate the face animations by decoding the latents and processing the conditions. Note: - The module is designed to work with the diffusers library, which is based on the paper "Diffusion Models for Image-to-Image Translation" (https://arxiv.org/abs/2102.02765). - The face animations generated by this module should be used for entertainment purposes only and should respect the rights and privacy of the individuals involved. """ import inspect from dataclasses import dataclass from typing import Callable, List, Optional, Union import numpy as np import torch from diffusers import DiffusionPipeline from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler) from diffusers.utils import BaseOutput, is_accelerate_available from diffusers.utils.torch_utils import randn_tensor from einops import rearrange from tqdm import tqdm from transformers import CLIPImageProcessor from joyhallo.models.mutual_self_attention import ReferenceAttentionControl if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") @dataclass class StaticPipelineOutput(BaseOutput): """ StaticPipelineOutput is a class that represents the output of the static pipeline. It contains the images generated by the pipeline as a union of torch.Tensor and np.ndarray. Attributes: images (Union[torch.Tensor, np.ndarray]): The generated images. """ images: Union[torch.Tensor, np.ndarray] class StaticPipeline(DiffusionPipeline): """ StaticPipelineOutput is a class that represents the output of the static pipeline. It contains the images generated by the pipeline as a union of torch.Tensor and np.ndarray. Attributes: images (Union[torch.Tensor, np.ndarray]): The generated images. """ _optional_components = [] def __init__( self, vae, reference_unet, denoising_unet, face_locator, imageproj, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], ): super().__init__() self.register_modules( vae=vae, reference_unet=reference_unet, denoising_unet=denoising_unet, face_locator=face_locator, scheduler=scheduler, imageproj=imageproj, ) self.vae_scale_factor = 2 ** ( len(self.vae.config.block_out_channels) - 1) self.clip_image_processor = CLIPImageProcessor() self.ref_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True ) self.cond_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False, ) def enable_vae_slicing(self): """ Enable VAE slicing. This method enables slicing for the VAE model, which can help improve the performance of decoding latents when working with large images. """ self.vae.enable_slicing() def disable_vae_slicing(self): """ Disable vae slicing. This function disables the vae slicing for the StaticPipeline object. It calls the `disable_slicing()` method of the vae model. This is useful when you want to use the entire vae model for decoding latents instead of slicing it for better performance. """ self.vae.disable_slicing() def enable_sequential_cpu_offload(self, gpu_id=0): """ Offloads selected models to the GPU for increased performance. Args: gpu_id (int, optional): The ID of the GPU to offload models to. Defaults to 0. """ device = torch.device(f"cuda:{gpu_id}") for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: if cpu_offloaded_model is not None: cpu_offload(cpu_offloaded_model, device) @property def _execution_device(self): if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def decode_latents(self, latents): """ Decode the given latents to video frames. Parameters: latents (torch.Tensor): The latents to be decoded. Shape: (batch_size, num_channels_latents, video_length, height, width). Returns: video (torch.Tensor): The decoded video frames. Shape: (batch_size, num_channels_latents, video_length, height, width). """ video_length = latents.shape[2] latents = 1 / 0.18215 * latents latents = rearrange(latents, "b c f h w -> (b f) c h w") # video = self.vae.decode(latents).sample video = [] for frame_idx in tqdm(range(latents.shape[0])): video.append(self.vae.decode( latents[frame_idx: frame_idx + 1]).sample) video = torch.cat(video) video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) video = (video / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 video = video.cpu().float().numpy() return video def prepare_extra_step_kwargs(self, generator, eta): """ Prepare extra keyword arguments for the scheduler step. Since not all schedulers have the same signature, this function helps to create a consistent interface for the scheduler. Args: generator (Optional[torch.Generator]): A random number generator for reproducibility. eta (float): The eta parameter used with the DDIMScheduler. It should be between 0 and 1. Returns: dict: A dictionary containing the extra keyword arguments for the scheduler step. """ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def prepare_latents( self, batch_size, num_channels_latents, width, height, dtype, device, generator, latents=None, ): """ Prepares the initial latents for the diffusion pipeline. Args: batch_size (int): The number of images to generate in one forward pass. num_channels_latents (int): The number of channels in the latents tensor. width (int): The width of the latents tensor. height (int): The height of the latents tensor. dtype (torch.dtype): The data type of the latents tensor. device (torch.device): The device to place the latents tensor on. generator (Optional[torch.Generator], optional): A random number generator for reproducibility. Defaults to None. latents (Optional[torch.Tensor], optional): Pre-computed latents to use as initial conditions for the diffusion process. Defaults to None. Returns: torch.Tensor: The prepared latents tensor. """ shape = ( batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor( shape, generator=generator, device=device, dtype=dtype ) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def prepare_condition( self, cond_image, width, height, device, dtype, do_classififer_free_guidance=False, ): """ Prepares the condition for the face animation pipeline. Args: cond_image (torch.Tensor): The conditional image tensor. width (int): The width of the output image. height (int): The height of the output image. device (torch.device): The device to run the pipeline on. dtype (torch.dtype): The data type of the tensor. do_classififer_free_guidance (bool, optional): Whether to use classifier-free guidance or not. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: A tuple of processed condition and mask tensors. """ image = self.cond_image_processor.preprocess( cond_image, height=height, width=width ).to(dtype=torch.float32) image = image.to(device=device, dtype=dtype) if do_classififer_free_guidance: image = torch.cat([image] * 2) return image @torch.no_grad() def __call__( self, ref_image, face_mask, width, height, num_inference_steps, guidance_scale, face_embedding, num_images_per_prompt=1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "tensor", return_dict: bool = True, callback: Optional[Callable[[ int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): # Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor device = self._execution_device do_classifier_free_guidance = guidance_scale > 1.0 # Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps batch_size = 1 image_prompt_embeds = self.imageproj(face_embedding) uncond_image_prompt_embeds = self.imageproj( torch.zeros_like(face_embedding)) if do_classifier_free_guidance: image_prompt_embeds = torch.cat( [uncond_image_prompt_embeds, image_prompt_embeds], dim=0 ) reference_control_writer = ReferenceAttentionControl( self.reference_unet, do_classifier_free_guidance=do_classifier_free_guidance, mode="write", batch_size=batch_size, fusion_blocks="full", ) reference_control_reader = ReferenceAttentionControl( self.denoising_unet, do_classifier_free_guidance=do_classifier_free_guidance, mode="read", batch_size=batch_size, fusion_blocks="full", ) num_channels_latents = self.denoising_unet.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, width, height, face_embedding.dtype, device, generator, ) latents = latents.unsqueeze(2) # (bs, c, 1, h', w') # latents_dtype = latents.dtype # Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # Prepare ref image latents ref_image_tensor = self.ref_image_processor.preprocess( ref_image, height=height, width=width ) # (bs, c, width, height) ref_image_tensor = ref_image_tensor.to( dtype=self.vae.dtype, device=self.vae.device ) ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w) # Prepare face mask image face_mask_tensor = self.cond_image_processor.preprocess( face_mask, height=height, width=width ) face_mask_tensor = face_mask_tensor.unsqueeze(2) # (bs, c, 1, h, w) face_mask_tensor = face_mask_tensor.to( device=device, dtype=self.face_locator.dtype ) mask_fea = self.face_locator(face_mask_tensor) mask_fea = ( torch.cat( [mask_fea] * 2) if do_classifier_free_guidance else mask_fea ) # denoising loop num_warmup_steps = len(timesteps) - \ num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # 1. Forward reference image if i == 0: self.reference_unet( ref_image_latents.repeat( (2 if do_classifier_free_guidance else 1), 1, 1, 1 ), torch.zeros_like(t), encoder_hidden_states=image_prompt_embeds, return_dict=False, ) # 2. Update reference unet feature into denosing net reference_control_reader.update(reference_control_writer) # 3.1 expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat( [latents] * 2) if do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input( latent_model_input, t ) noise_pred = self.denoising_unet( latent_model_input, t, encoder_hidden_states=image_prompt_embeds, mask_cond_fea=mask_fea, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs, return_dict=False )[0] # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) reference_control_reader.clear() reference_control_writer.clear() # Post-processing image = self.decode_latents(latents) # (b, c, 1, h, w) # Convert to tensor if output_type == "tensor": image = torch.from_numpy(image) if not return_dict: return image return StaticPipelineOutput(images=image)