"""Gradio demo for denoisers.""" import gradio as gr import numpy as np import torch import torchaudio from denoisers import WaveUNetModel from tqdm import tqdm MODELS = ["wrice/waveunet-vctk-48khz", "wrice/waveunet-vctk-24khz"] def main(): """Main.""" iface = gr.Interface( fn=denoise, inputs=[gr.Dropdown(choices=MODELS, default=MODELS[0]), "audio"], outputs="audio", ) iface.launch() def denoise(model_name, inputs): """Denoise audio.""" model = WaveUNetModel.from_pretrained(model_name) sr, audio = inputs audio = torch.from_numpy(audio)[None] audio = audio / 32768.0 print(f"Audio shape: {audio.shape}") print(f"Sample rate: {sr}") if sr != model.config.sample_rate: audio = torchaudio.functional.resample(audio, sr, model.config.sample_rate) chunk_size = model.config.max_length padding = abs(audio.size(-1) % chunk_size - chunk_size) padded = torch.nn.functional.pad(audio, (0, padding)) clean = [] for i in tqdm(range(0, padded.shape[-1], chunk_size)): audio_chunk = padded[:, i : i + chunk_size] with torch.no_grad(): clean_chunk = model(audio_chunk[None]).logits clean.append(clean_chunk.squeeze(0)) denoised = torch.concat(clean).flatten()[: audio.shape[-1]].clamp(-1.0, 1.0) denoised = (denoised * 32767.0).numpy().astype(np.int16) print(f"Denoised shape: {denoised.shape}") return model.config.sample_rate, denoised if __name__ == "__main__": main()