import gradio as gr import os os.system('pip install transformers torch') from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load the pre-trained model and tokenizer model_name = "microsoft/DialoGPT-small" model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) # Initial system prompt and chat history system_prompt = "You are a helpful assistant." chat_history = system_prompt def generate_response(prompt, max_length=50, temperature=0.8): global chat_history input_text = chat_history + " User: " + prompt input_ids = tokenizer.encode(input_text, return_tensors="pt") output_ids = model.generate(input_ids, max_length=max_length, temperature=temperature, num_return_sequences=1) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Update chat history chat_history += f" User: {prompt} Assistant: {response}" return response iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(), outputs="text", live=True ) iface.launch()