import os from dotenv import find_dotenv, load_dotenv import streamlit as st from typing import Generator from groq import Groq import datetime import json _ = load_dotenv(find_dotenv()) st.set_page_config(page_icon="💬", layout="wide", page_title="Groq Chat Bot...") def icon(emoji: str): """Shows an emoji as a Notion-style page icon.""" st.write( f'{emoji}', unsafe_allow_html=True, ) icon("📣") st.subheader("Groq Chat Streamlit App", divider="rainbow", anchor=False) client = Groq( api_key=os.environ['GROQ_API_KEY'], ) models = { "mixtral-8x7b-32768": { "name": "Mixtral-8x7b-Instruct-v0.1", "tokens": 32768, "developer": "Mistral", }, "llama2-70b-4096": {"name": "LLaMA2-70b-chat", "tokens": 4096, "developer": "Meta"}, "gemma-7b-it": {"name": "Gemma-7b-it", "tokens": 8192, "developer": "Google"}, } col1, col2 = st.columns(2) with col1: model_option = st.selectbox( "Choose a model:", options=list(models.keys()), format_func=lambda x: models[x]["name"], index=0, ) if "messages" not in st.session_state: st.session_state.messages = [] if "selected_model" not in st.session_state: st.session_state.selected_model = None if st.session_state.selected_model != model_option: st.session_state.messages = [] st.session_state.selected_model = model_option max_tokens_range = models[model_option]["tokens"] with col2: max_tokens = st.slider( "Max Tokens:", min_value=512, max_value=max_tokens_range, value=min(32768, max_tokens_range), step=512, help=f"Adjust the maximum number of tokens (words) for the model's response. Max for selected model: {max_tokens_range}", ) for message in st.session_state.messages: avatar = "🤖" if message["role"] == "assistant" else "🕺" with st.chat_message(message["role"], avatar=avatar): st.markdown(message["content"]) def generate_chat_responses(chat_completion) -> Generator[str, None, None]: """Yield chat response content from the Groq API response.""" for chunk in chat_completion: if chunk.choices[0].delta.content: yield chunk.choices[0].delta.content if chunk.choices[0].message.tool_calls: for tool_call in chunk.choices[0].message.tool_calls: function_name = tool_call.function.name if function_name == "time_date": owner_info = get_tool_owner_info() yield owner_info def run_conversation(user_prompt): messages=[ { "role": "system", "content": "You are a helpful assistant named ChattyBot." }, { "role": "user", "content": user_prompt, } ] tools = [ { "type": "function", "function": { "name": "time_date", "description": "The tool will return information about the time and date to the AI.", "parameters": {}, }, } ] response = client.chat.completions.create( model=model_option, messages=messages, tools=tools, tool_choice="auto", max_tokens=4096 ) response_message = response.choices[0].message tool_calls = response_message.tool_calls if tool_calls: available_functions = { "time_date": get_tool_owner_info } messages.append(response_message) for tool_call in tool_calls: function_name = tool_call.function.name function_to_call = available_functions[function_name] function_args = json.loads(tool_call.function.arguments) function_response = function_to_call(**function_args) messages.append( { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": function_response, } ) second_response = client.chat.completions.create( model=model_option, messages=messages ) return second_response.choices[0].message.content else: return response_message.content def get_tool_owner_info(): owner_info = { "date_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") } return json.dumps(owner_info) if prompt := st.chat_input("Enter your prompt here..."): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user", avatar="🕺"): st.markdown(prompt) try: chat_completion = client.chat.completions.create( model=model_option, messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], max_tokens=max_tokens, stream=True, ) with st.chat_message("assistant", avatar="🤖"): chat_responses_generator = generate_chat_responses(chat_completion) full_response = st.write_stream(chat_responses_generator) except Exception as e: st.error(e, icon="🚨") if isinstance(full_response, str): st.session_state.messages.append( {"role": "assistant", "content": full_response} ) else: combined_response = "\n".join(str(item) for item in full_response) st.session_state.messages.append( {"role": "assistant", "content": combined_response} )