import os import logging from llama_index import GPTSimpleVectorIndex, ServiceContext from llama_index import download_loader from llama_index import ( Document, LLMPredictor, PromptHelper, QuestionAnswerPrompt, RefinePrompt, ) from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI import colorama import PyPDF2 from tqdm import tqdm from modules.presets import * from modules.utils import * def get_index_name(file_src): file_paths = [x.name for x in file_src] file_paths.sort(key=lambda x: os.path.basename(x)) md5_hash = hashlib.md5() for file_path in file_paths: with open(file_path, "rb") as f: while chunk := f.read(8192): md5_hash.update(chunk) return md5_hash.hexdigest() def block_split(text): blocks = [] while len(text) > 0: blocks.append(Document(text[:1000])) text = text[1000:] return blocks def get_documents(file_src): documents = [] logging.debug("Loading documents...") logging.debug(f"file_src: {file_src}") for file in file_src: logging.info(f"loading file: {file.name}") if os.path.splitext(file.name)[1] == ".pdf": logging.debug("Loading PDF...") pdftext = "" with open(file.name, 'rb') as pdfFileObj: pdfReader = PyPDF2.PdfReader(pdfFileObj) for page in tqdm(pdfReader.pages): pdftext += page.extract_text() text_raw = pdftext elif os.path.splitext(file.name)[1] == ".docx": logging.debug("Loading DOCX...") DocxReader = download_loader("DocxReader") loader = DocxReader() text_raw = loader.load_data(file=file.name)[0].text elif os.path.splitext(file.name)[1] == ".epub": logging.debug("Loading EPUB...") EpubReader = download_loader("EpubReader") loader = EpubReader() text_raw = loader.load_data(file=file.name)[0].text else: logging.debug("Loading text file...") with open(file.name, "r", encoding="utf-8") as f: text_raw = f.read() text = add_space(text_raw) # text = block_split(text) # documents += text documents += [Document(text)] logging.debug("Documents loaded.") return documents def construct_index( api_key, file_src, max_input_size=4096, num_outputs=5, max_chunk_overlap=20, chunk_size_limit=600, embedding_limit=None, separator=" " ): os.environ["OPENAI_API_KEY"] = api_key chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit embedding_limit = None if embedding_limit == 0 else embedding_limit separator = " " if separator == "" else separator llm_predictor = LLMPredictor( llm=ChatOpenAI(model_name="gpt-3.5-turbo-0301", openai_api_key=api_key) ) prompt_helper = PromptHelper(max_input_size = max_input_size, num_output = num_outputs, max_chunk_overlap = max_chunk_overlap, embedding_limit=embedding_limit, chunk_size_limit=600, separator=separator) index_name = get_index_name(file_src) if os.path.exists(f"./index/{index_name}.json"): logging.info("找到了缓存的索引文件,加载中……") return GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json") else: try: documents = get_documents(file_src) logging.info("构建索引中……") service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit=chunk_size_limit) index = GPTSimpleVectorIndex.from_documents( documents, service_context=service_context ) logging.debug("索引构建完成!") os.makedirs("./index", exist_ok=True) index.save_to_disk(f"./index/{index_name}.json") logging.debug("索引已保存至本地!") return index except Exception as e: logging.error("索引构建失败!", e) print(e) return None def chat_ai( api_key, index, question, context, chatbot, reply_language, ): os.environ["OPENAI_API_KEY"] = api_key logging.info(f"Question: {question}") response, chatbot_display, status_text = ask_ai( api_key, index, question, replace_today(PROMPT_TEMPLATE), REFINE_TEMPLATE, SIM_K, INDEX_QUERY_TEMPRATURE, context, reply_language, ) if response is None: status_text = "查询失败,请换个问法试试" return context, chatbot response = response context.append({"role": "user", "content": question}) context.append({"role": "assistant", "content": response}) chatbot.append((question, chatbot_display)) os.environ["OPENAI_API_KEY"] = "" return context, chatbot, status_text def ask_ai( api_key, index, question, prompt_tmpl, refine_tmpl, sim_k=5, temprature=0, prefix_messages=[], reply_language="中文", ): os.environ["OPENAI_API_KEY"] = api_key logging.debug("Index file found") logging.debug("Querying index...") llm_predictor = LLMPredictor( llm=ChatOpenAI( temperature=temprature, model_name="gpt-3.5-turbo-0301", prefix_messages=prefix_messages, ) ) response = None # Initialize response variable to avoid UnboundLocalError qa_prompt = QuestionAnswerPrompt(prompt_tmpl.replace("{reply_language}", reply_language)) rf_prompt = RefinePrompt(refine_tmpl.replace("{reply_language}", reply_language)) response = index.query( question, similarity_top_k=sim_k, text_qa_template=qa_prompt, refine_template=rf_prompt, response_mode="compact", ) if response is not None: logging.info(f"Response: {response}") ret_text = response.response nodes = [] for index, node in enumerate(response.source_nodes): brief = node.source_text[:25].replace("\n", "") nodes.append( f"
[{index + 1}]\t{brief}...

{node.source_text}

" ) new_response = ret_text + "\n----------\n" + "\n\n".join(nodes) logging.info( f"Response: {colorama.Fore.BLUE}{ret_text}{colorama.Style.RESET_ALL}" ) os.environ["OPENAI_API_KEY"] = "" return ret_text, new_response, f"查询消耗了{llm_predictor.last_token_usage} tokens" else: logging.warning("No response found, returning None") os.environ["OPENAI_API_KEY"] = "" return None def add_space(text): punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "} for cn_punc, en_punc in punctuations.items(): text = text.replace(cn_punc, en_punc) return text