import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch import json title = "AI ChatBot" description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" examples = [["How are you?"]] tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") def predict(input, history=[], file_path=None): if file_path: json_data = read_json_file(file_path) print(f"Contents of {file_path}:") print(json_data) print() new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt") bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) history = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id).tolist() response = tokenizer.decode(history[0]).split("\n") # Splitting on new lines return response[0], history def read_json_file(file_path): with open(file_path, 'r') as file: data = json.load(file) return data def main(): gr.Interface( fn=predict, title=title, description=description, examples=examples, inputs=[gr.inputs.Textbox(label="User Input"), gr.inputs.File(label="JSON File")], outputs=["text", "text"], theme="finlaymacklon/boxy_violet", ).launch() if __name__ == "__main__": main()