import gradio as gr import os from PIL import Image import numpy as np import pickle import io import sys import torch import subprocess import h5py from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import pandas as pd from sklearn.metrics import f1_score import seaborn as sns #################### BEAM PREDICTION #########################} def beam_prediction_task(data_percentage, task_complexity): # Folder naming convention based on input_type, data_percentage, and task_complexity raw_folder = f"images/raw_{data_percentage/100:.1f}_{task_complexity}" embeddings_folder = f"images/embedding_{data_percentage/100:.1f}_{task_complexity}" # Process raw confusion matrix raw_cm = compute_average_confusion_matrix(raw_folder) if raw_cm is not None: raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png") plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix ({data_percentage}% data, {task_complexity} beams)", save_path=raw_cm_path) raw_img = Image.open(raw_cm_path) else: raw_img = None # Process embeddings confusion matrix embeddings_cm = compute_average_confusion_matrix(embeddings_folder) if embeddings_cm is not None: embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png") plot_confusion_matrix_beamPred(embeddings_cm, classes=np.arange(embeddings_cm.shape[0]), title=f"Embeddings Confusion Matrix ({data_percentage}% data, {task_complexity} beams)", save_path=embeddings_cm_path) embeddings_img = Image.open(embeddings_cm_path) else: embeddings_img = None return raw_img, embeddings_img from sklearn.metrics import f1_score # Function to compute the F1-score based on the confusion matrix def compute_f1_score(cm): # Compute precision and recall TP = np.diag(cm) FP = np.sum(cm, axis=0) - TP FN = np.sum(cm, axis=1) - TP precision = TP / (TP + FP) recall = TP / (TP + FN) # Handle division by zero in precision or recall precision = np.nan_to_num(precision) recall = np.nan_to_num(recall) # Compute F1 score f1 = 2 * (precision * recall) / (precision + recall) f1 = np.nan_to_num(f1) # Replace NaN with 0 return np.mean(f1) # Return the mean F1-score across all classes # Function to plot and save confusion matrix with F1-score in the title def plot_confusion_matrix_beamPred(cm, classes, title, save_path): # Compute the average F1-score avg_f1 = compute_f1_score(cm) # Update title to include average F1-score full_title = f"{title} (Avg F1-Score: {avg_f1:.2f})" # Plot the confusion matrix plt.figure(figsize=(8, 6)) plt.imshow(cm, interpolation='nearest', cmap='coolwarm') plt.title(full_title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.savefig(save_path) plt.close() def compute_average_confusion_matrix(folder): confusion_matrices = [] max_num_labels = 0 # First pass to determine the maximum number of labels for file in os.listdir(folder): if file.endswith(".csv"): data = pd.read_csv(os.path.join(folder, file)) num_labels = len(np.unique(data["Target"])) max_num_labels = max(max_num_labels, num_labels) # Second pass to calculate the confusion matrices and pad if necessary for file in os.listdir(folder): if file.endswith(".csv"): data = pd.read_csv(os.path.join(folder, file)) y_true = data["Target"] y_pred = data["Top-1 Prediction"] num_labels = len(np.unique(y_true)) # Compute confusion matrix cm = confusion_matrix(y_true, y_pred, labels=np.arange(max_num_labels)) # If the confusion matrix is smaller, pad it to match the largest size if cm.shape[0] < max_num_labels: padded_cm = np.zeros((max_num_labels, max_num_labels)) padded_cm[:cm.shape[0], :cm.shape[1]] = cm confusion_matrices.append(padded_cm) else: confusion_matrices.append(cm) if confusion_matrices: avg_cm = np.mean(confusion_matrices, axis=0) return avg_cm else: return None ########################## LOS/NLOS CLASSIFICATION #############################3 # Paths to the predefined images folder LOS_PATH = "images_LoS" # Define the percentage values percentage_values_los = np.linspace(0.001, 1, 20) * 100 # 20 percentage values # Function to compute confusion matrix and plot it from sklearn.metrics import f1_score import seaborn as sns # Function to compute confusion matrix, F1-score and plot it with dark mode style def plot_confusion_matrix_from_csv(csv_file_path, title, save_path): # Load CSV file data = pd.read_csv(csv_file_path) # Extract ground truth and predictions y_true = data['Target'] y_pred = data['Top-1 Prediction'] # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) # Compute F1-score f1 = f1_score(y_true, y_pred, average='macro') # Macro-average F1-score # Set dark mode styling plt.style.use('dark_background') plt.figure(figsize=(5, 5)) # Plot the confusion matrix with a dark-mode compatible colormap sns.heatmap(cm, annot=True, fmt="d", cmap="magma", cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white') # Add F1-score to the title plt.title(f"{title} (F1 Score: {f1:.3f})", color="white", fontsize=14) # Customize tick labels for dark mode plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10) plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10) plt.ylabel('True label', color="white", fontsize=12) plt.xlabel('Predicted label', color="white", fontsize=12) plt.tight_layout() # Save the plot as an image plt.savefig(save_path, transparent=True) # Use transparent to blend with the dark mode website plt.close() # Return the saved image return Image.open(save_path) # Function to load confusion matrix based on percentage and input_type def display_confusion_matrices_los(percentage_idx): percentage = percentage_values_los[percentage_idx] # Construct folder names raw_folder = os.path.join(LOS_PATH, f"raw_{percentage/100:.3f}_los_noTraining") embeddings_folder = os.path.join(LOS_PATH, f"embedding_{percentage/100:.3f}_los_noTraining") # Process raw confusion matrix raw_csv_file = os.path.join(raw_folder, f"test_predictions_raw_{percentage/100:.3f}_los.csv") raw_cm_img_path = os.path.join(raw_folder, "confusion_matrix_raw.png") raw_img = plot_confusion_matrix_from_csv(raw_csv_file, f"Raw Confusion Matrix ({percentage:.1f}% data)", raw_cm_img_path) # Process embeddings confusion matrix embeddings_csv_file = os.path.join(embeddings_folder, f"test_predictions_embedding_{percentage/100:.3f}_los.csv") embeddings_cm_img_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png") embeddings_img = plot_confusion_matrix_from_csv(embeddings_csv_file, f"Embeddings Confusion Matrix ({percentage:.1f}% data)", embeddings_cm_img_path) return raw_img, embeddings_img # Main function to handle user choice def handle_user_choice(choice, percentage_idx=None, uploaded_file=None): if choice == "Use Default Dataset": raw_img, embeddings_img = display_confusion_matrices_los(percentage_idx) return raw_img, embeddings_img, "" # Return empty string for console output elif choice == "Upload Dataset": if uploaded_file is not None: raw_img, embeddings_img, console_output = process_hdf5_file(uploaded_file, percentage_idx) return raw_img, embeddings_img, console_output else: return "Please upload a dataset", "Please upload a dataset", "" # Return empty string for console output else: return "Invalid choice", "Invalid choice", "" # Return empty string for console output # Custom class to capture print output class PrintCapture(io.StringIO): def __init__(self): super().__init__() self.output = [] def write(self, txt): self.output.append(txt) super().write(txt) def get_output(self): return ''.join(self.output) # Function to load and display predefined images based on user selection def display_predefined_images(percentage_idx): percentage = percentage_values_los[percentage_idx] raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png") embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png") # Check if the images exist if os.path.exists(raw_image_path): raw_image = Image.open(raw_image_path) else: raw_image = create_random_image() # Use a fallback random image if os.path.exists(embeddings_image_path): embeddings_image = Image.open(embeddings_image_path) else: embeddings_image = create_random_image() # Use a fallback random image return raw_image, embeddings_image def los_nlos_classification(file, percentage_idx): if file is not None: raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage_idx) return raw_cm_image, emb_cm_image, console_output # Returning all three: two images and console output else: raw_image, embeddings_image = display_predefined_images(percentage_idx) return raw_image, embeddings_image, "" # Return an empty string for console output when no file is uploaded # Function to create random images for LoS/NLoS classification results def create_random_image(size=(300, 300)): random_image = np.random.rand(*size, 3) * 255 return Image.fromarray(random_image.astype('uint8')) import importlib.util # Function to dynamically load a Python module from a given file path def load_module_from_path(module_name, file_path): spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module # Function to split dataset into training and test sets based on user selection def split_dataset(channels, labels, percentage_idx): percentage = percentage_values_los[percentage_idx] / 100 num_samples = channels.shape[0] train_size = int(num_samples * percentage) print(f'Number of Training Samples: {train_size}') indices = np.arange(num_samples) np.random.shuffle(indices) train_idx, test_idx = indices[:train_size], indices[train_size:] train_data, test_data = channels[train_idx], channels[test_idx] train_labels, test_labels = labels[train_idx], labels[test_idx] return train_data, test_data, train_labels, test_labels # Function to calculate Euclidean distance between a point and a centroid def euclidean_distance(x, centroid): return np.linalg.norm(x - centroid) import torch def classify_based_on_distance(train_data, train_labels, test_data): # Compute the centroids for the two classes centroid_0 = train_data[train_labels == 0].mean(dim=0) # Use torch.mean centroid_1 = train_data[train_labels == 1].mean(dim=0) # Use torch.mean predictions = [] for test_point in test_data: # Compute Euclidean distance between the test point and each centroid dist_0 = euclidean_distance(test_point, centroid_0) dist_1 = euclidean_distance(test_point, centroid_1) predictions.append(0 if dist_0 < dist_1 else 1) return torch.tensor(predictions) # Return predictions as a PyTorch tensor # Function to generate confusion matrix plot def plot_confusion_matrix(y_true, y_pred, title): cm = confusion_matrix(y_true, y_pred) plt.figure(figsize=(5, 5)) plt.imshow(cm, cmap='Blues') plt.title(title) plt.xlabel('Predicted') plt.ylabel('Actual') plt.colorbar() # Add labels for x and y ticks (Actual/Predicted class labels) plt.xticks([0, 1], labels=[0, 1]) plt.yticks([0, 1], labels=[0, 1]) # Annotate the confusion matrix thresh = cm.max() / 2 # Define threshold to choose text color (black or white) for i in range(cm.shape[0]): for j in range(cm.shape[1]): plt.text(j, i, format(cm[i, j], 'd'), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.savefig(f"{title}.png") return Image.open(f"{title}.png") def identical_train_test_split(output_emb, output_raw, labels, percentage_idx): N = output_emb.shape[0] # Get the total number of samples # Generate the indices for shuffling and splitting indices = torch.randperm(N) # Randomly shuffle the indices # Calculate the split index split_index = int(N * percentage_values_los[percentage_idx]/100) print(f'Training Size: {split_index}') # Split indices into train and test train_indices = indices[:split_index] # First 80% for training test_indices = indices[split_index:] # Remaining 20% for testing # Select the same indices from both output_emb and output_raw train_emb = output_emb[train_indices] test_emb = output_emb[test_indices] train_raw = output_raw[train_indices] test_raw = output_raw[test_indices] train_labels = labels[train_indices] test_labels = labels[test_indices] return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels # Store the original working directory when the app starts original_dir = os.getcwd() def process_hdf5_file(uploaded_file, percentage_idx): capture = PrintCapture() sys.stdout = capture # Redirect print statements to capture try: model_repo_url = "https://huggingface.co/sadjadalikhani/LWM" model_repo_dir = "./LWM" # Step 1: Clone the repository if not already done if not os.path.exists(model_repo_dir): print(f"Cloning model repository from {model_repo_url}...") subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True) # Step 2: Verify the repository was cloned and change the working directory repo_work_dir = os.path.join(original_dir, model_repo_dir) if os.path.exists(repo_work_dir): os.chdir(repo_work_dir) # Change the working directory only once print(f"Changed working directory to {os.getcwd()}") print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content else: print(f"Directory {repo_work_dir} does not exist.") return # Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py') input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py') inference_path = os.path.join(os.getcwd(), 'inference.py') # Load lwm_model lwm_model = load_module_from_path("lwm_model", lwm_model_path) # Load input_preprocess input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path) # Load inference inference = load_module_from_path("inference", inference_path) # Step 4: Load the model from lwm_model module device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Loading the LWM model on {device}...") model = lwm_model.LWM.from_pretrained(device=device).to(torch.float32) # Step 5: Load the HDF5 file and extract the channels and labels with h5py.File(uploaded_file.name, 'r') as f: channels = np.array(f['channels']) # Assuming 'channels' dataset in the HDF5 file labels = np.array(f['labels']) # Assuming 'labels' dataset in the HDF5 file print(f"Loaded dataset with {channels.shape[0]} samples.") # Step 7: Tokenize the data using the tokenizer from input_preprocess preprocessed_chs = input_preprocess.tokenizer(manual_data=channels) #print(preprocessed_chs[0][0][1]) # Step 7: Perform inference using the functions from inference.py output_emb = inference.lwm_inference(preprocessed_chs, 'cls_emb', model) output_raw = inference.create_raw_dataset(preprocessed_chs, device) print(f"Output Embeddings Shape: {output_emb.shape}") print(f"Output Raw Shape: {output_raw.shape}") print(f'percentage_idx: {percentage_idx}') print(f'percentage_value: {percentage_values_los[percentage_idx]}') train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1), output_raw.view(len(output_raw),-1), labels, percentage_idx) # Step 8: Perform classification using the Euclidean distance for both raw and embeddings print(f'train_data_emb: {train_data_emb.shape}') print(f'train_labels: {train_labels.shape}') print(f'test_data_emb: {test_data_emb.shape}') pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw) pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb) #print(f'pred_emb: {pred_emb}') #print(f'actual labels: {test_labels}') # Step 9: Generate confusion matrices for both raw and embeddings raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)") emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)") return raw_cm_image, emb_cm_image, capture.get_output() except Exception as e: return str(e), str(e), capture.get_output() finally: # Always return to the original working directory after processing os.chdir(original_dir) sys.stdout = sys.__stdout__ # Reset print statements ######################## Define the Gradio interface ############################### with gr.Blocks(css=""" .slider-container { display: inline-block; margin-right: 50px; text-align: center; } """) as demo: # Tab for Beam Prediction Task with gr.Tab("Beam Prediction Task"): gr.Markdown("### Beam Prediction Task") with gr.Row(): with gr.Column(): data_percentage_slider = gr.Slider(label="Data Percentage for Training", minimum=10, maximum=100, step=10, value=10) task_complexity_dropdown = gr.Dropdown(label="Task Complexity (Number of Beams)", choices=[16, 32, 64, 128, 256], value=16) with gr.Row(): raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300) embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300) # Update the confusion matrices whenever sliders change data_percentage_slider.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp]) task_complexity_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp]) # Separate Tab for LoS/NLoS Classification Task with gr.Tab("LoS/NLoS Classification Task"): gr.Markdown("### LoS/NLoS Classification Task") # Radio button for user choice: predefined data or upload dataset choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset") # Dropdown for selecting percentage for predefined data #percentage_dropdown_los = gr.Dropdown(choices=[f"{value:.3f}" for value in percentage_values_los], value=f"{percentage_values_los[0]:.3f}", label="Percentage of Data for Training") percentage_dropdown_los = gr.Dropdown(choices=list(range(20)), value=0, label="Percentage of Data for Training") # File uploader for dataset (only visible if user chooses to upload a dataset) file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False) # Confusion matrices display with gr.Row(): raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300) embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300) output_textbox = gr.Textbox(label="Console Output", lines=10) # Update the file uploader visibility based on user choice def toggle_file_input(choice): return gr.update(visible=(choice == "Upload Dataset")) choice_radio.change(fn=toggle_file_input, inputs=[choice_radio], outputs=file_input) # When user makes a choice, update the display choice_radio.change(fn=handle_user_choice, inputs=[choice_radio, percentage_dropdown_los, file_input], outputs=[raw_img_los, embeddings_img_los, output_textbox]) # When percentage slider changes (for predefined data) percentage_dropdown_los.change(fn=handle_user_choice, inputs=[choice_radio, percentage_dropdown_los, file_input], outputs=[raw_img_los, embeddings_img_los, output_textbox]) # Launch the app if __name__ == "__main__": demo.launch()