import gradio as gr import os import time from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.llms import OpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key") def loading_pdf(): return "Working the upload. Also, pondering the usefulness of sporks..." def pdf_changes(pdf_doc): loader = OnlinePDFLoader(pdf_doc.name) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() global qa qa = ConversationalRetrievalChain.from_llm( llm=OpenAI(temperature=0.5), retriever=retriever, return_source_documents=False) return "Ready" def clear_data(): global qa qa = None return "Data cleared" def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) formatted_response = '\n'.join(response.split('. ')) history[-1][1] = "" for character in formatted_response: history[-1][1] += character time.sleep(0.05) yield history def infer(question, history): res = [] for human, ai in history[:-1]: pair = (human, ai) res.append(pair) chat_history = res query = question result = qa({"question": query, "chat_history": chat_history}) return result["answer"] css = """ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """
Upload a .PDF from your computer, click the "Load PDF to LangChain" button,
when everything is ready, you can start asking questions about the pdf ;)
This version is set to store chat history, and uses OpenAI as LLM.