import os import gradio as gr from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain_community.vectorstores import Chroma from langchain.retrievers import MultiQueryRetriever from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferWindowMemory from langchain_community.llms import llamacpp, huggingface_hub from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.chains.question_answering import load_qa_chain from huggingface_hub import hf_hub_download, login login(os.environ['hf_token']) _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question without changing the content in given question. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions. Read the given context before answering questions and think step by step. If you can not answer a user question based on the provided context, inform the user. Do not use any other information for answering the user. Provide a detailed answer to the question.""" def load_llmware_model(): return huggingface_hub.HuggingFaceHub( repo_id = "llmware/bling-sheared-llama-2.7b-0.1", task="text-generation", # verbose=True, huggingfacehub_api_token=os.environ['hf_token'], model_kwargs={ 'temperature':0.03, } ) def load_quantized_model(model_id=None): MODEL_ID, MODEL_BASENAME = "TheBloke/zephyr-7B-beta-GGUF","zephyr-7b-beta.Q5_K_S.gguf" try: model_path = hf_hub_download( repo_id=MODEL_ID, filename=MODEL_BASENAME, resume_download=True, cache_dir = "models" ) kwargs = { 'model_path': model_path, 'n_ctx': 10000, 'max_tokens': 10000, 'n_batch': 512, # 'n_gpu_layers':6, } return llamacpp.LlamaCpp(**kwargs) except TypeError: print("Supported model architecture: Llama, Mistral") return None def upload_files(files): file_paths = [file.name for file in files] return file_paths with gr.Blocks() as demo: gr.Markdown( """

PrivateGPT

""") with gr.Row(): with gr.Column(scale=1): with gr.Row(): model_id = gr.Radio(["Zephyr-7b-Beta", "Llama-2-7b-chat"], value="Llama-2-7b-chat",label="LLM Model") with gr.Row(): mode = gr.Radio(['OITF Manuals', 'Operations Data'], value='OITF Manuals',label="Data") persist_directory = "db" embeddings = HuggingFaceBgeEmbeddings( model_name = "BAAI/bge-small-en-v1.5", model_kwargs={"device": "cpu"}, encode_kwargs = {'normalize_embeddings':True}, cache_folder="models", ) db2 = Chroma(persist_directory = persist_directory,embedding_function = embeddings) # llm = load_quantized_model(model_id=model_id) #type:ignore # --------------------------------------------------------------------------------------------------- llm = load_quantized_model() llm_sm = load_llmware_model() # --------------------------------------------------------------------------------------------------- condense_question_prompt_template = PromptTemplate.from_template(_template) prompt_template = system_prompt + """ {context} Question: {question} Helpful Answer:""" qa_prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) memory = ConversationBufferWindowMemory(memory_key='chat_history', k=1, return_messages=True) retriever_from_llm = MultiQueryRetriever.from_llm( retriever=db2.as_retriever(search_kwargs={'k':5}), llm = llm_sm, ) qa2 = ConversationalRetrievalChain( retriever=retriever_from_llm, question_generator= LLMChain(llm=llm_sm, prompt=condense_question_prompt_template, memory=memory, verbose=True), #type:ignore combine_docs_chain=load_qa_chain(llm=llm, chain_type="stuff", prompt=qa_prompt, verbose=True), #type:ignore memory=memory, verbose=True, # type: ignore ) def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): res = qa2.invoke( { 'question': history[-1][0], 'chat_history': history[:-1] } ) history[-1][1] = res['answer'] # torch.cuda.empty_cache() return history with gr.Column(scale=9): # type: ignore with gr.Row(): chatbot = gr.Chatbot([], elem_id="chatbot",label="Chat", height=500, show_label=True, avatar_images=["user.jpeg","Bot.jpg"]) with gr.Row(): with gr.Column(scale=8): # type: ignore txt = gr.Textbox( show_label=False, placeholder="Enter text and press enter", container=False, ) with gr.Column(scale=1): # type: ignore submit_btn = gr.Button( 'Submit', variant='primary' ) with gr.Column(scale=1): # type: ignore clear_btn = gr.Button( 'Clear', variant="stop" ) txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then( bot, chatbot, chatbot ) submit_btn.click(add_text, [chatbot, txt], [chatbot, txt]).then( bot, chatbot, chatbot ) clear_btn.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.queue() demo.launch(max_threads=8, debug=True)