#!pip install gradio import gradio as gr def read_pdf(pdf_path): # create a PDF file object pdfFileObj = open(pdf_path, 'rb') # create a PDF reader object pdfReader = PyPDF2.PdfReader(pdfFileObj) # Create the dictionary to extract text from each page text_per_page = {} # We extract the pages from the PDF for pagenum, page in enumerate(extract_pages(pdf_path)): # Initialize the variables needed for the text extraction from the page pageObj = pdfReader.pages[pagenum] page_text = [] line_format = [] text_from_images = [] text_from_tables = [] page_content = [] # Initialize the number of the examined tables table_num = 0 first_element= True table_extraction_flag= False # Open the pdf file pdf = pdfplumber.open(pdf_path) # Find the examined page page_tables = pdf.pages[pagenum] # Find the number of tables on the page tables = page_tables.find_tables() # Find all the elements page_elements = [(element.y1, element) for element in page._objs] # Sort all the elements as they appear in the page page_elements.sort(key=lambda a: a[0], reverse=True) # Find the elements that composed a page for i, component in enumerate(page_elements): # Extract the position of the top side of the element in the PDF pos = component[0] # Extract the element of the page layout element = component[1] # Check if the element is a text element if isinstance(element, LTTextContainer): # Check if the text appeared in a table if table_extraction_flag == False: # Use the function to extract the text and format for each text element (line_text, format_per_line) = text_extraction(element) # Append the text of each line to the page text page_text.append(line_text) # Append the format for each line containing text line_format.append(format_per_line) page_content.append(line_text) else: # Omit the text that appeared in a table pass # Create the key of the dictionary dctkey = 'Page_'+str(pagenum) # Add the list of list as the value of the page key text_per_page[dctkey] = [page_text, line_format, text_from_images, text_from_tables, page_content] # Closing the pdf file object pdfFileObj.close() return text_per_page pdf_path = '/content/Article 11 Hidden Technical Debt in Machine Learning Systems.pdf' text_per_page = read_pdf(pdf_path) Page_0 = text_per_page['Page_0'] def nested_list_to_string(nested_list): result = '' for element in nested_list: if isinstance(element, list): # Check if the element is a list result += nested_list_to_string(element) # Recursively process the list elif isinstance(element, str): # Check if the element is a string result += element # Append the string to the result return result Page_0 = text_per_page['Page_0'] string_result = nested_list_to_string(Page_0) def extract_abstract(page_0): def nested_list_to_string(nested_list): result = '' for element in nested_list: if isinstance(element, list): # Check if the element is a list result += nested_list_to_string(element) # Recursively process the list elif isinstance(element, str): # Check if the element is a string result += element # Append the string to the result return result # Convert the nested list into a single string full_text = nested_list_to_string(page_0) # Find the start of the 'Abstract' section and the end of it (start of 'Introduction') start_index = full_text.find('Abstract') end_index = full_text.find('Introduction') # If both 'Abstract' and 'Introduction' are found, extract the text in between if start_index != -1 and end_index != -1: # Extract the text and remove the word 'Abstract' abstract_text = full_text[start_index + len('Abstract'):end_index] return abstract_text.strip() else: return "Abstract or Introduction section not found." # Example usage Page_0 = text_per_page['Page_0'] abstract_text = extract_abstract(Page_0) wall_of_text = abstract_text result = summarizer( wall_of_text, min_length=1, max_length=30, no_repeat_ngram_size=3, encoder_no_repeat_ngram_size=3, repetition_penalty=3.5, num_beams=4, early_stopping=True, ) # Access the first element of the list (which is the dictionary) and then the value of 'summary_text' summary_string = result[0]['summary_text'] print(summary_string) app = gra.Interface(fn = user_greeting, inputs=summary_string, outputs=summary_string) app.launch()