"""
# Copyright (c) 2022, salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import streamlit as st
from app import load_demo_image, device
from app.utils import load_model_cache
from lavis.processors import load_processor
from PIL import Image
def app():
model_type = st.sidebar.selectbox("Model:", ["BLIP"])
# ===== layout =====
st.markdown(
"
Visual Question Answering
",
unsafe_allow_html=True,
)
instructions = """Try the provided image or upload your own:"""
file = st.file_uploader(instructions)
col1, col2 = st.columns(2)
col1.header("Image")
if file:
raw_img = Image.open(file).convert("RGB")
else:
raw_img = load_demo_image()
w, h = raw_img.size
scaling_factor = 720 / w
resized_image = raw_img.resize((int(w * scaling_factor), int(h * scaling_factor)))
col1.image(resized_image, use_column_width=True)
col2.header("Question")
user_question = col2.text_input("Input your question!", "What are objects there?")
qa_button = st.button("Submit")
col2.header("Answer")
# ===== event =====
vis_processor = load_processor("blip_image_eval").build(image_size=480)
text_processor = load_processor("blip_question").build()
if qa_button:
if model_type.startswith("BLIP"):
model = load_model_cache(
"blip_vqa", model_type="vqav2", is_eval=True, device=device
)
img = vis_processor(raw_img).unsqueeze(0).to(device)
question = text_processor(user_question)
vqa_samples = {"image": img, "text_input": [question]}
answers = model.predict_answers(vqa_samples, inference_method="generate")
col2.write("\n".join(answers), use_column_width=True)