import gradio as gr import numpy as np import cv2 from PIL import Image import torch import base64 import requests from io import BytesIO from region_control import MultiDiffusion, get_views, preprocess_mask from sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix MAX_COLORS = 12 sd = MultiDiffusion("cuda", "2.0") canvas_html = "
" load_js = """ async () => { const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js" fetch(url) .then(res => res.text()) .then(text => { const script = document.createElement('script'); script.type = "module" script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); document.head.appendChild(script); }); } """ get_js_colors = """ async (canvasData) => { const canvasEl = document.getElementById("canvas-root"); return [canvasEl._data] } """ set_canvas_size =""" async (aspect) => { if(aspect ==='square'){ _updateCanvas(512,512) } if(aspect ==='horizontal'){ _updateCanvas(768,512) } if(aspect ==='vertical'){ _updateCanvas(512,768) } } """ def process_sketch(canvas_data, binary_matrixes): base64_img = canvas_data['image'] image_data = base64.b64decode(base64_img.split(',')[1]) image = Image.open(BytesIO(image_data)) im2arr = np.array(image) colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']] colors_fixed = [] for color in colors: r, g, b = color if any(c != 255 for c in (r, g, b)): binary_matrix = create_binary_matrix(im2arr, (r,g,b)) binary_matrixes.append(binary_matrix) colors_fixed.append(gr.update(value=f'
')) visibilities = [] colors = [] for n in range(MAX_COLORS): visibilities.append(gr.update(visible=False)) colors.append(gr.update(value=f'
')) for n in range(len(colors)-1): visibilities[n] = gr.update(visible=True) colors[n] = colors_fixed[n] return [gr.update(visible=True), binary_matrixes, *visibilities, *colors] def process_generation(binary_matrixes, master_prompt, *prompts): clipped_prompts = prompts[:len(binary_matrixes)] prompts = [master_prompt] + list(clipped_prompts) neg_prompts = [""] * len(prompts) fg_masks = torch.cat([preprocess_mask(mask_path, 512 // 8, 512 // 8, "cuda") for mask_path in binary_matrixes]) bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True) bg_mask[bg_mask < 0] = 0 masks = torch.cat([bg_mask, fg_masks]) print(masks.size()) image = sd.generate(masks, prompts, neg_prompts, 512, 512, 50, bootstrapping=20) return(image) css = ''' #color-bg{display:flex;justify-content: center;align-items: center;} .color-bg-item{width: 100%; height: 32px} #main_button{width:100%} .isPopup.svelte-160vdtq { top: -342px !important; z-index: 10001 !important; left: -25px !important; } .alpha.svelte-2ybi8r, .color.svelte-2ybi8r { width: 25px !important; height: 25px !important; } ") #aspect.change(update_css, inputs=aspect, outputs=[image, image_horizontal, image_vertical]) button_run.click(process_sketch, inputs=[canvas_data, binary_matrixes], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors) final_run_btn.click(process_generation, inputs=[binary_matrixes, general_prompt, *prompts], outputs=out_image) demo.load(None, None, None, _js=load_js) demo.launch(debug=True)