import numpy as np import cv2 from PIL import Image from skimage.color import rgb2lab from skimage.color import lab2rgb from sklearn.cluster import KMeans def count_high_freq_colors(image): im = image.getcolors(maxcolors=1024*1024) sorted_colors = sorted(im, key=lambda x: x[0], reverse=True) freqs = [c[0] for c in sorted_colors] mean_freq = sum(freqs) / len(freqs) high_freq_colors = [c for c in sorted_colors if c[0] > max(2, mean_freq*1.25)] return high_freq_colors def get_high_freq_colors(image, similarity_threshold=30): image_copy = image.copy() high_freq_colors = count_high_freq_colors(image) # Check for similar colors and replace the lower frequency color with the higher frequency color in the image for i, (freq1, color1) in enumerate(high_freq_colors): for j, (freq2, color2) in enumerate(high_freq_colors): if (color_distance(color1, color2) < similarity_threshold) or (color_distance(color1, opaque_color_on_white(color2, 0.5)) < 5): if(freq2 > freq1): replace_color(image_copy, color1, color2) high_freq_colors = count_high_freq_colors(image_copy) print(high_freq_colors) return [high_freq_colors, image_copy] def color_quantization(image, color_frequency_list): # Extract the color values from the frequency list color_values = [color for _, color in color_frequency_list] # Replace the colors that are not in the frequency list with white mask = np.ones(image.shape[:2], dtype=bool) for color in color_values: color_mask = np.all(image == color, axis=2) mask = np.logical_and(mask, np.logical_not(color_mask)) image[mask] = (255, 255, 255) return image def create_binary_matrix(img_arr, target_color): # Create mask of pixels with target color mask = np.all(img_arr == target_color, axis=-1) # Convert mask to binary matrix binary_matrix = mask.astype(int) from datetime import datetime binary_file_name = f'mask-{datetime.now().timestamp()}.png' cv2.imwrite(binary_file_name, binary_matrix * 255) #binary_matrix = torch.from_numpy(binary_matrix).unsqueeze(0).unsqueeze(0) return binary_file_name