#!/usr/bin/env python3 """ Copyright (c) 2020 Carleton University Biomedical Informatics Collaboratory This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ from typing import List from types import SimpleNamespace import argparse, os, json, shutil from tqdm import tqdm import os.path as path import numpy as np from PIL import Image LABEL_CLASS_INDICES = { "250": 0, ".25": 1, "500": 2, ".5": 3, "1000": 4, "1": 5, "1K": 6, "2000": 7, "2": 8, "2K": 9, "4000": 10, "4": 11, "4K": 12, "8000": 13, "8": 14, "8K": 15, "0": 16, "20": 17, "40": 18, "60": 19, "80": 20, "100": 21, "120": 22 } def extract_labels(annotation: dict, image: Image) -> List[tuple]: """Extracts the bounding boxes of labels into a tuple compatible the YOLOv5 format. Parameters ---------- annotation : dict A dictionary containing the annotations for the audiograms in a report. image : Image The image in PIL format corresponding to the annotation. Returns ------- tuple A tuple of the form (class index, x_center, y_center, width, height) where all coordinates and dimensions are normalized to the width/height of the image. """ label_label_tuples = [] image_width, image_height = image.size for audiogram in annotation: for label in audiogram["labels"]: bounding_box = label["boundingBox"] x_center = (bounding_box["x"] + bounding_box["width"] / 2) / image_width y_center = (bounding_box["y"] + bounding_box["height"] / 2) / image_height box_width = bounding_box["width"] / image_width box_height = bounding_box["height"] / image_width try: label_label_tuples.append((LABEL_CLASS_INDICES[label["value"]], x_center, y_center, box_width, box_height)) except: continue return label_label_tuples def create_directory_structure(data_dir: str): try: shutil.rmtree(path.join(data_dir)) except: pass os.mkdir(path.join(data_dir)) os.mkdir(path.join(data_dir, "images")) os.mkdir(path.join(data_dir, "images", "train")) os.mkdir(path.join(data_dir, "images", "validation")) os.mkdir(path.join(data_dir, "labels")) os.mkdir(path.join(data_dir, "labels", "train")) os.mkdir(path.join(data_dir, "labels", "validation")) def create_yolov5_file(bboxes: List[tuple], filename: str): # Turn the bounding boxes into a string with a bounding box # on each line file_content = "\n".join([ f"{bbox[0]} {bbox[1]} {bbox[2]} {bbox[3]} {bbox[4]}" for bbox in bboxes ]) # Save to a file with open(filename, "w") as output_file: output_file.write(file_content) def all_labels_valid(labels: List[tuple]): for label in labels: for value in label[1:]: if value < 0 or value > 1: return False return True def main(args: SimpleNamespace): # Find all the JSON files in the input directory report_ids = [ filename.rstrip(".json") for filename in os.listdir(path.join(args.annotations_dir)) if filename.endswith(".json") and path.exists(path.join(args.images_dir, filename.rstrip(".json") + ".jpg")) ] # Shuffle np.random.seed(seed=42) # for reproducibility of the shuffle np.random.shuffle(report_ids) # Create the directory structure in which the images and annotations # are to be stored create_directory_structure(args.data_dir) # Iterate through the report ids, extract the annotations in YOLOv5 format # and place the file in the correct directory, and the image in the correct # directory. for i, report_id in enumerate(tqdm(report_ids)): # Decide if the image is going into the training set or validation set directory = ( "train" if i < args.train_frac * len(report_ids) else "validation" ) # Load the annotation` annotation_content = open( path.join(args.annotations_dir, f"{report_id}.json") ) image = Image.open(os.path.join(args.images_dir, f"{report_id}.jpg")) annotation = json.load(annotation_content) bounding_boxes = extract_labels(annotation, image) if not all_labels_valid(bounding_boxes): continue # Open the corresponding image to get its dimensions image = Image.open(os.path.join(args.images_dir, f"{report_id}.jpg")) create_yolov5_file( bounding_boxes, path.join(args.data_dir, "labels", directory, f"{report_id}.txt") ) image.save( path.join(args.data_dir, "images", directory, f"{report_id}.jpg") ) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description=( "Script that formats the training set for transfer learning of labels detection via " "the YOLOv5 model." )) parser.add_argument("-d", "--data_dir", type=str, required=True, help=( "Path to the directory where the training set should be created." )) parser.add_argument("-a", "--annotations_dir", type=str, required=True, help=( "Path to the directory containing the annotations in the JSON format." )) parser.add_argument("-i", "--images_dir", type=str, required=True, help=( "Path to the directory containing the images." )) parser.add_argument("-f", "--train_frac", type=float, required=True, help=( "Fraction of images to be used for training. (e.g. 0.8)" )) args = parser.parse_args() main(args)