/** * Creates an HTMLElement with optional attributes and children * * Examples: * * ```js * br = createElem('br'); * p = createElem('p', 'hello world'); * a = createElem('a', {href: 'https://google.com', textContent: 'Google'}); * ul = createElement('ul', {}, [ * createElem('li', 'apple'), * createElem('li', 'banana'), * ]); * h1 = createElem('h1', { style: { color: 'red' }, textContent: 'Title'}) * ``` */ function createElem(tag, attrs = {}, children = []) { const elem = document.createElement(tag); if (typeof attrs === 'string') { elem.textContent = attrs; } else { const elemAsAttribs = elem; for (const [key, value] of Object.entries(attrs)) { if (typeof value === 'function' && key.startsWith('on')) { const eventName = key.substring(2).toLowerCase(); // TODO: make type safe or at least more type safe. // eslint-disable-next-line @typescript-eslint/no-explicit-any elem.addEventListener(eventName, value, { passive: false, }); } else if (typeof value === 'object') { for (const [k, v] of Object.entries(value)) { elemAsAttribs[key][k] = v; } } else if (elemAsAttribs[key] === undefined) { elem.setAttribute(key, value); } else { elemAsAttribs[key] = value; } } } for (const child of children) { elem.appendChild(child); } return elem; } function _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); } /** The default maximum length of a `TreeBuffer` node. */ const DefaultBufferLength = 1024; let nextPropID = 0; let Range$1 = class Range { constructor(from, to) { this.from = from; this.to = to; } }; /** Each [node type](#common.NodeType) or [individual tree](#common.Tree) can have metadata associated with it in props. Instances of this class represent prop names. */ class NodeProp { /** Create a new node prop type. */ constructor(config = {}) { this.id = nextPropID++; this.perNode = !!config.perNode; this.deserialize = config.deserialize || (() => { throw new Error("This node type doesn't define a deserialize function"); }); } /** This is meant to be used with [`NodeSet.extend`](#common.NodeSet.extend) or [`LRParser.configure`](#lr.ParserConfig.props) to compute prop values for each node type in the set. Takes a [match object](#common.NodeType^match) or function that returns undefined if the node type doesn't get this prop, and the prop's value if it does. */ add(match) { if (this.perNode) throw new RangeError("Can't add per-node props to node types"); if (typeof match != "function") match = NodeType.match(match); return (type) => { let result = match(type); return result === undefined ? null : [this, result]; }; } } /** Prop that is used to describe matching delimiters. For opening delimiters, this holds an array of node names (written as a space-separated string when declaring this prop in a grammar) for the node types of closing delimiters that match it. */ NodeProp.closedBy = new NodeProp({ deserialize: str => str.split(" ") }); /** The inverse of [`closedBy`](#common.NodeProp^closedBy). This is attached to closing delimiters, holding an array of node names of types of matching opening delimiters. */ NodeProp.openedBy = new NodeProp({ deserialize: str => str.split(" ") }); /** Used to assign node types to groups (for example, all node types that represent an expression could be tagged with an `"Expression"` group). */ NodeProp.group = new NodeProp({ deserialize: str => str.split(" ") }); /** Attached to nodes to indicate these should be [displayed](https://codemirror.net/docs/ref/#language.syntaxTree) in a bidirectional text isolate, so that direction-neutral characters on their sides don't incorrectly get associated with surrounding text. You'll generally want to set this for nodes that contain arbitrary text, like strings and comments, and for nodes that appear _inside_ arbitrary text, like HTML tags. When not given a value, in a grammar declaration, defaults to `"auto"`. */ NodeProp.isolate = new NodeProp({ deserialize: value => { if (value && value != "rtl" && value != "ltr" && value != "auto") throw new RangeError("Invalid value for isolate: " + value); return value || "auto"; } }); /** The hash of the [context](#lr.ContextTracker.constructor) that the node was parsed in, if any. Used to limit reuse of contextual nodes. */ NodeProp.contextHash = new NodeProp({ perNode: true }); /** The distance beyond the end of the node that the tokenizer looked ahead for any of the tokens inside the node. (The LR parser only stores this when it is larger than 25, for efficiency reasons.) */ NodeProp.lookAhead = new NodeProp({ perNode: true }); /** This per-node prop is used to replace a given node, or part of a node, with another tree. This is useful to include trees from different languages in mixed-language parsers. */ NodeProp.mounted = new NodeProp({ perNode: true }); /** A mounted tree, which can be [stored](#common.NodeProp^mounted) on a tree node to indicate that parts of its content are represented by another tree. */ class MountedTree { constructor( /** The inner tree. */ tree, /** If this is null, this tree replaces the entire node (it will be included in the regular iteration instead of its host node). If not, only the given ranges are considered to be covered by this tree. This is used for trees that are mixed in a way that isn't strictly hierarchical. Such mounted trees are only entered by [`resolveInner`](#common.Tree.resolveInner) and [`enter`](#common.SyntaxNode.enter). */ overlay, /** The parser used to create this subtree. */ parser) { this.tree = tree; this.overlay = overlay; this.parser = parser; } /** @internal */ static get(tree) { return tree && tree.props && tree.props[NodeProp.mounted.id]; } } const noProps = Object.create(null); /** Each node in a syntax tree has a node type associated with it. */ class NodeType { /** @internal */ constructor( /** The name of the node type. Not necessarily unique, but if the grammar was written properly, different node types with the same name within a node set should play the same semantic role. */ name, /** @internal */ props, /** The id of this node in its set. Corresponds to the term ids used in the parser. */ id, /** @internal */ flags = 0) { this.name = name; this.props = props; this.id = id; this.flags = flags; } /** Define a node type. */ static define(spec) { let props = spec.props && spec.props.length ? Object.create(null) : noProps; let flags = (spec.top ? 1 /* NodeFlag.Top */ : 0) | (spec.skipped ? 2 /* NodeFlag.Skipped */ : 0) | (spec.error ? 4 /* NodeFlag.Error */ : 0) | (spec.name == null ? 8 /* NodeFlag.Anonymous */ : 0); let type = new NodeType(spec.name || "", props, spec.id, flags); if (spec.props) for (let src of spec.props) { if (!Array.isArray(src)) src = src(type); if (src) { if (src[0].perNode) throw new RangeError("Can't store a per-node prop on a node type"); props[src[0].id] = src[1]; } } return type; } /** Retrieves a node prop for this type. Will return `undefined` if the prop isn't present on this node. */ prop(prop) { return this.props[prop.id]; } /** True when this is the top node of a grammar. */ get isTop() { return (this.flags & 1 /* NodeFlag.Top */) > 0; } /** True when this node is produced by a skip rule. */ get isSkipped() { return (this.flags & 2 /* NodeFlag.Skipped */) > 0; } /** Indicates whether this is an error node. */ get isError() { return (this.flags & 4 /* NodeFlag.Error */) > 0; } /** When true, this node type doesn't correspond to a user-declared named node, for example because it is used to cache repetition. */ get isAnonymous() { return (this.flags & 8 /* NodeFlag.Anonymous */) > 0; } /** Returns true when this node's name or one of its [groups](#common.NodeProp^group) matches the given string. */ is(name) { if (typeof name == 'string') { if (this.name == name) return true; let group = this.prop(NodeProp.group); return group ? group.indexOf(name) > -1 : false; } return this.id == name; } /** Create a function from node types to arbitrary values by specifying an object whose property names are node or [group](#common.NodeProp^group) names. Often useful with [`NodeProp.add`](#common.NodeProp.add). You can put multiple names, separated by spaces, in a single property name to map multiple node names to a single value. */ static match(map) { let direct = Object.create(null); for (let prop in map) for (let name of prop.split(" ")) direct[name] = map[prop]; return (node) => { for (let groups = node.prop(NodeProp.group), i = -1; i < (groups ? groups.length : 0); i++) { let found = direct[i < 0 ? node.name : groups[i]]; if (found) return found; } }; } } /** An empty dummy node type to use when no actual type is available. */ NodeType.none = new NodeType("", Object.create(null), 0, 8 /* NodeFlag.Anonymous */); /** A node set holds a collection of node types. It is used to compactly represent trees by storing their type ids, rather than a full pointer to the type object, in a numeric array. Each parser [has](#lr.LRParser.nodeSet) a node set, and [tree buffers](#common.TreeBuffer) can only store collections of nodes from the same set. A set can have a maximum of 2**16 (65536) node types in it, so that the ids fit into 16-bit typed array slots. */ class NodeSet { /** Create a set with the given types. The `id` property of each type should correspond to its position within the array. */ constructor( /** The node types in this set, by id. */ types) { this.types = types; for (let i = 0; i < types.length; i++) if (types[i].id != i) throw new RangeError("Node type ids should correspond to array positions when creating a node set"); } /** Create a copy of this set with some node properties added. The arguments to this method can be created with [`NodeProp.add`](#common.NodeProp.add). */ extend(...props) { let newTypes = []; for (let type of this.types) { let newProps = null; for (let source of props) { let add = source(type); if (add) { if (!newProps) newProps = Object.assign({}, type.props); newProps[add[0].id] = add[1]; } } newTypes.push(newProps ? new NodeType(type.name, newProps, type.id, type.flags) : type); } return new NodeSet(newTypes); } } const CachedNode = new WeakMap(), CachedInnerNode = new WeakMap(); /** Options that control iteration. Can be combined with the `|` operator to enable multiple ones. */ var IterMode; (function (IterMode) { /** When enabled, iteration will only visit [`Tree`](#common.Tree) objects, not nodes packed into [`TreeBuffer`](#common.TreeBuffer)s. */ IterMode[IterMode["ExcludeBuffers"] = 1] = "ExcludeBuffers"; /** Enable this to make iteration include anonymous nodes (such as the nodes that wrap repeated grammar constructs into a balanced tree). */ IterMode[IterMode["IncludeAnonymous"] = 2] = "IncludeAnonymous"; /** By default, regular [mounted](#common.NodeProp^mounted) nodes replace their base node in iteration. Enable this to ignore them instead. */ IterMode[IterMode["IgnoreMounts"] = 4] = "IgnoreMounts"; /** This option only applies in [`enter`](#common.SyntaxNode.enter)-style methods. It tells the library to not enter mounted overlays if one covers the given position. */ IterMode[IterMode["IgnoreOverlays"] = 8] = "IgnoreOverlays"; })(IterMode || (IterMode = {})); /** A piece of syntax tree. There are two ways to approach these trees: the way they are actually stored in memory, and the convenient way. Syntax trees are stored as a tree of `Tree` and `TreeBuffer` objects. By packing detail information into `TreeBuffer` leaf nodes, the representation is made a lot more memory-efficient. However, when you want to actually work with tree nodes, this representation is very awkward, so most client code will want to use the [`TreeCursor`](#common.TreeCursor) or [`SyntaxNode`](#common.SyntaxNode) interface instead, which provides a view on some part of this data structure, and can be used to move around to adjacent nodes. */ class Tree { /** Construct a new tree. See also [`Tree.build`](#common.Tree^build). */ constructor( /** The type of the top node. */ type, /** This node's child nodes. */ children, /** The positions (offsets relative to the start of this tree) of the children. */ positions, /** The total length of this tree */ length, /** Per-node [node props](#common.NodeProp) to associate with this node. */ props) { this.type = type; this.children = children; this.positions = positions; this.length = length; /** @internal */ this.props = null; if (props && props.length) { this.props = Object.create(null); for (let [prop, value] of props) this.props[typeof prop == "number" ? prop : prop.id] = value; } } /** @internal */ toString() { let mounted = MountedTree.get(this); if (mounted && !mounted.overlay) return mounted.tree.toString(); let children = ""; for (let ch of this.children) { let str = ch.toString(); if (str) { if (children) children += ","; children += str; } } return !this.type.name ? children : (/\W/.test(this.type.name) && !this.type.isError ? JSON.stringify(this.type.name) : this.type.name) + (children.length ? "(" + children + ")" : ""); } /** Get a [tree cursor](#common.TreeCursor) positioned at the top of the tree. Mode can be used to [control](#common.IterMode) which nodes the cursor visits. */ cursor(mode = 0) { return new TreeCursor(this.topNode, mode); } /** Get a [tree cursor](#common.TreeCursor) pointing into this tree at the given position and side (see [`moveTo`](#common.TreeCursor.moveTo). */ cursorAt(pos, side = 0, mode = 0) { let scope = CachedNode.get(this) || this.topNode; let cursor = new TreeCursor(scope); cursor.moveTo(pos, side); CachedNode.set(this, cursor._tree); return cursor; } /** Get a [syntax node](#common.SyntaxNode) object for the top of the tree. */ get topNode() { return new TreeNode(this, 0, 0, null); } /** Get the [syntax node](#common.SyntaxNode) at the given position. If `side` is -1, this will move into nodes that end at the position. If 1, it'll move into nodes that start at the position. With 0, it'll only enter nodes that cover the position from both sides. Note that this will not enter [overlays](#common.MountedTree.overlay), and you often want [`resolveInner`](#common.Tree.resolveInner) instead. */ resolve(pos, side = 0) { let node = resolveNode(CachedNode.get(this) || this.topNode, pos, side, false); CachedNode.set(this, node); return node; } /** Like [`resolve`](#common.Tree.resolve), but will enter [overlaid](#common.MountedTree.overlay) nodes, producing a syntax node pointing into the innermost overlaid tree at the given position (with parent links going through all parent structure, including the host trees). */ resolveInner(pos, side = 0) { let node = resolveNode(CachedInnerNode.get(this) || this.topNode, pos, side, true); CachedInnerNode.set(this, node); return node; } /** In some situations, it can be useful to iterate through all nodes around a position, including those in overlays that don't directly cover the position. This method gives you an iterator that will produce all nodes, from small to big, around the given position. */ resolveStack(pos, side = 0) { return stackIterator(this, pos, side); } /** Iterate over the tree and its children, calling `enter` for any node that touches the `from`/`to` region (if given) before running over such a node's children, and `leave` (if given) when leaving the node. When `enter` returns `false`, that node will not have its children iterated over (or `leave` called). */ iterate(spec) { let { enter, leave, from = 0, to = this.length } = spec; let mode = spec.mode || 0, anon = (mode & IterMode.IncludeAnonymous) > 0; for (let c = this.cursor(mode | IterMode.IncludeAnonymous); ;) { let entered = false; if (c.from <= to && c.to >= from && (!anon && c.type.isAnonymous || enter(c) !== false)) { if (c.firstChild()) continue; entered = true; } for (; ;) { if (entered && leave && (anon || !c.type.isAnonymous)) leave(c); if (c.nextSibling()) break; if (!c.parent()) return; entered = true; } } } /** Get the value of the given [node prop](#common.NodeProp) for this node. Works with both per-node and per-type props. */ prop(prop) { return !prop.perNode ? this.type.prop(prop) : this.props ? this.props[prop.id] : undefined; } /** Returns the node's [per-node props](#common.NodeProp.perNode) in a format that can be passed to the [`Tree`](#common.Tree) constructor. */ get propValues() { let result = []; if (this.props) for (let id in this.props) result.push([+id, this.props[id]]); return result; } /** Balance the direct children of this tree, producing a copy of which may have children grouped into subtrees with type [`NodeType.none`](#common.NodeType^none). */ balance(config = {}) { return this.children.length <= 8 /* Balance.BranchFactor */ ? this : balanceRange(NodeType.none, this.children, this.positions, 0, this.children.length, 0, this.length, (children, positions, length) => new Tree(this.type, children, positions, length, this.propValues), config.makeTree || ((children, positions, length) => new Tree(NodeType.none, children, positions, length))); } /** Build a tree from a postfix-ordered buffer of node information, or a cursor over such a buffer. */ static build(data) { return buildTree(data); } } /** The empty tree */ Tree.empty = new Tree(NodeType.none, [], [], 0); class FlatBufferCursor { constructor(buffer, index) { this.buffer = buffer; this.index = index; } get id() { return this.buffer[this.index - 4]; } get start() { return this.buffer[this.index - 3]; } get end() { return this.buffer[this.index - 2]; } get size() { return this.buffer[this.index - 1]; } get pos() { return this.index; } next() { this.index -= 4; } fork() { return new FlatBufferCursor(this.buffer, this.index); } } /** Tree buffers contain (type, start, end, endIndex) quads for each node. In such a buffer, nodes are stored in prefix order (parents before children, with the endIndex of the parent indicating which children belong to it). */ class TreeBuffer { /** Create a tree buffer. */ constructor( /** The buffer's content. */ buffer, /** The total length of the group of nodes in the buffer. */ length, /** The node set used in this buffer. */ set) { this.buffer = buffer; this.length = length; this.set = set; } /** @internal */ get type() { return NodeType.none; } /** @internal */ toString() { let result = []; for (let index = 0; index < this.buffer.length;) { result.push(this.childString(index)); index = this.buffer[index + 3]; } return result.join(","); } /** @internal */ childString(index) { let id = this.buffer[index], endIndex = this.buffer[index + 3]; let type = this.set.types[id], result = type.name; if (/\W/.test(result) && !type.isError) result = JSON.stringify(result); index += 4; if (endIndex == index) return result; let children = []; while (index < endIndex) { children.push(this.childString(index)); index = this.buffer[index + 3]; } return result + "(" + children.join(",") + ")"; } /** @internal */ findChild(startIndex, endIndex, dir, pos, side) { let { buffer } = this, pick = -1; for (let i = startIndex; i != endIndex; i = buffer[i + 3]) { if (checkSide(side, pos, buffer[i + 1], buffer[i + 2])) { pick = i; if (dir > 0) break; } } return pick; } /** @internal */ slice(startI, endI, from) { let b = this.buffer; let copy = new Uint16Array(endI - startI), len = 0; for (let i = startI, j = 0; i < endI;) { copy[j++] = b[i++]; copy[j++] = b[i++] - from; let to = copy[j++] = b[i++] - from; copy[j++] = b[i++] - startI; len = Math.max(len, to); } return new TreeBuffer(copy, len, this.set); } } function checkSide(side, pos, from, to) { switch (side) { case -2 /* Side.Before */: return from < pos; case -1 /* Side.AtOrBefore */: return to >= pos && from < pos; case 0 /* Side.Around */: return from < pos && to > pos; case 1 /* Side.AtOrAfter */: return from <= pos && to > pos; case 2 /* Side.After */: return to > pos; case 4 /* Side.DontCare */: return true; } } function resolveNode(node, pos, side, overlays) { var _a; // Move up to a node that actually holds the position, if possible while (node.from == node.to || (side < 1 ? node.from >= pos : node.from > pos) || (side > -1 ? node.to <= pos : node.to < pos)) { let parent = !overlays && node instanceof TreeNode && node.index < 0 ? null : node.parent; if (!parent) return node; node = parent; } let mode = overlays ? 0 : IterMode.IgnoreOverlays; // Must go up out of overlays when those do not overlap with pos if (overlays) for (let scan = node, parent = scan.parent; parent; scan = parent, parent = scan.parent) { if (scan instanceof TreeNode && scan.index < 0 && ((_a = parent.enter(pos, side, mode)) === null || _a === void 0 ? void 0 : _a.from) != scan.from) node = parent; } for (; ;) { let inner = node.enter(pos, side, mode); if (!inner) return node; node = inner; } } class BaseNode { cursor(mode = 0) { return new TreeCursor(this, mode); } getChild(type, before = null, after = null) { let r = getChildren(this, type, before, after); return r.length ? r[0] : null; } getChildren(type, before = null, after = null) { return getChildren(this, type, before, after); } resolve(pos, side = 0) { return resolveNode(this, pos, side, false); } resolveInner(pos, side = 0) { return resolveNode(this, pos, side, true); } matchContext(context) { return matchNodeContext(this, context); } enterUnfinishedNodesBefore(pos) { let scan = this.childBefore(pos), node = this; while (scan) { let last = scan.lastChild; if (!last || last.to != scan.to) break; if (last.type.isError && last.from == last.to) { node = scan; scan = last.prevSibling; } else { scan = last; } } return node; } get node() { return this; } get next() { return this.parent; } } class TreeNode extends BaseNode { constructor(_tree, from, // Index in parent node, set to -1 if the node is not a direct child of _parent.node (overlay) index, _parent) { super(); this._tree = _tree; this.from = from; this.index = index; this._parent = _parent; } get type() { return this._tree.type; } get name() { return this._tree.type.name; } get to() { return this.from + this._tree.length; } nextChild(i, dir, pos, side, mode = 0) { for (let parent = this; ;) { for (let { children, positions } = parent._tree, e = dir > 0 ? children.length : -1; i != e; i += dir) { let next = children[i], start = positions[i] + parent.from; if (!checkSide(side, pos, start, start + next.length)) continue; if (next instanceof TreeBuffer) { if (mode & IterMode.ExcludeBuffers) continue; let index = next.findChild(0, next.buffer.length, dir, pos - start, side); if (index > -1) return new BufferNode(new BufferContext(parent, next, i, start), null, index); } else if ((mode & IterMode.IncludeAnonymous) || (!next.type.isAnonymous || hasChild(next))) { let mounted; if (!(mode & IterMode.IgnoreMounts) && (mounted = MountedTree.get(next)) && !mounted.overlay) return new TreeNode(mounted.tree, start, i, parent); let inner = new TreeNode(next, start, i, parent); return (mode & IterMode.IncludeAnonymous) || !inner.type.isAnonymous ? inner : inner.nextChild(dir < 0 ? next.children.length - 1 : 0, dir, pos, side); } } if ((mode & IterMode.IncludeAnonymous) || !parent.type.isAnonymous) return null; if (parent.index >= 0) i = parent.index + dir; else i = dir < 0 ? -1 : parent._parent._tree.children.length; parent = parent._parent; if (!parent) return null; } } get firstChild() { return this.nextChild(0, 1, 0, 4 /* Side.DontCare */); } get lastChild() { return this.nextChild(this._tree.children.length - 1, -1, 0, 4 /* Side.DontCare */); } childAfter(pos) { return this.nextChild(0, 1, pos, 2 /* Side.After */); } childBefore(pos) { return this.nextChild(this._tree.children.length - 1, -1, pos, -2 /* Side.Before */); } enter(pos, side, mode = 0) { let mounted; if (!(mode & IterMode.IgnoreOverlays) && (mounted = MountedTree.get(this._tree)) && mounted.overlay) { let rPos = pos - this.from; for (let { from, to } of mounted.overlay) { if ((side > 0 ? from <= rPos : from < rPos) && (side < 0 ? to >= rPos : to > rPos)) return new TreeNode(mounted.tree, mounted.overlay[0].from + this.from, -1, this); } } return this.nextChild(0, 1, pos, side, mode); } nextSignificantParent() { let val = this; while (val.type.isAnonymous && val._parent) val = val._parent; return val; } get parent() { return this._parent ? this._parent.nextSignificantParent() : null; } get nextSibling() { return this._parent && this.index >= 0 ? this._parent.nextChild(this.index + 1, 1, 0, 4 /* Side.DontCare */) : null; } get prevSibling() { return this._parent && this.index >= 0 ? this._parent.nextChild(this.index - 1, -1, 0, 4 /* Side.DontCare */) : null; } get tree() { return this._tree; } toTree() { return this._tree; } /** @internal */ toString() { return this._tree.toString(); } } function getChildren(node, type, before, after) { let cur = node.cursor(), result = []; if (!cur.firstChild()) return result; if (before != null) for (let found = false; !found;) { found = cur.type.is(before); if (!cur.nextSibling()) return result; } for (; ;) { if (after != null && cur.type.is(after)) return result; if (cur.type.is(type)) result.push(cur.node); if (!cur.nextSibling()) return after == null ? result : []; } } function matchNodeContext(node, context, i = context.length - 1) { for (let p = node.parent; i >= 0; p = p.parent) { if (!p) return false; if (!p.type.isAnonymous) { if (context[i] && context[i] != p.name) return false; i--; } } return true; } class BufferContext { constructor(parent, buffer, index, start) { this.parent = parent; this.buffer = buffer; this.index = index; this.start = start; } } class BufferNode extends BaseNode { get name() { return this.type.name; } get from() { return this.context.start + this.context.buffer.buffer[this.index + 1]; } get to() { return this.context.start + this.context.buffer.buffer[this.index + 2]; } constructor(context, _parent, index) { super(); this.context = context; this._parent = _parent; this.index = index; this.type = context.buffer.set.types[context.buffer.buffer[index]]; } child(dir, pos, side) { let { buffer } = this.context; let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.context.start, side); return index < 0 ? null : new BufferNode(this.context, this, index); } get firstChild() { return this.child(1, 0, 4 /* Side.DontCare */); } get lastChild() { return this.child(-1, 0, 4 /* Side.DontCare */); } childAfter(pos) { return this.child(1, pos, 2 /* Side.After */); } childBefore(pos) { return this.child(-1, pos, -2 /* Side.Before */); } enter(pos, side, mode = 0) { if (mode & IterMode.ExcludeBuffers) return null; let { buffer } = this.context; let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], side > 0 ? 1 : -1, pos - this.context.start, side); return index < 0 ? null : new BufferNode(this.context, this, index); } get parent() { return this._parent || this.context.parent.nextSignificantParent(); } externalSibling(dir) { return this._parent ? null : this.context.parent.nextChild(this.context.index + dir, dir, 0, 4 /* Side.DontCare */); } get nextSibling() { let { buffer } = this.context; let after = buffer.buffer[this.index + 3]; if (after < (this._parent ? buffer.buffer[this._parent.index + 3] : buffer.buffer.length)) return new BufferNode(this.context, this._parent, after); return this.externalSibling(1); } get prevSibling() { let { buffer } = this.context; let parentStart = this._parent ? this._parent.index + 4 : 0; if (this.index == parentStart) return this.externalSibling(-1); return new BufferNode(this.context, this._parent, buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */)); } get tree() { return null; } toTree() { let children = [], positions = []; let { buffer } = this.context; let startI = this.index + 4, endI = buffer.buffer[this.index + 3]; if (endI > startI) { let from = buffer.buffer[this.index + 1]; children.push(buffer.slice(startI, endI, from)); positions.push(0); } return new Tree(this.type, children, positions, this.to - this.from); } /** @internal */ toString() { return this.context.buffer.childString(this.index); } } function iterStack(heads) { if (!heads.length) return null; let pick = 0, picked = heads[0]; for (let i = 1; i < heads.length; i++) { let node = heads[i]; if (node.from > picked.from || node.to < picked.to) { picked = node; pick = i; } } let next = picked instanceof TreeNode && picked.index < 0 ? null : picked.parent; let newHeads = heads.slice(); if (next) newHeads[pick] = next; else newHeads.splice(pick, 1); return new StackIterator(newHeads, picked); } class StackIterator { constructor(heads, node) { this.heads = heads; this.node = node; } get next() { return iterStack(this.heads); } } function stackIterator(tree, pos, side) { let inner = tree.resolveInner(pos, side), layers = null; for (let scan = inner instanceof TreeNode ? inner : inner.context.parent; scan; scan = scan.parent) { if (scan.index < 0) { // This is an overlay root let parent = scan.parent; (layers || (layers = [inner])).push(parent.resolve(pos, side)); scan = parent; } else { let mount = MountedTree.get(scan.tree); // Relevant overlay branching off if (mount && mount.overlay && mount.overlay[0].from <= pos && mount.overlay[mount.overlay.length - 1].to >= pos) { let root = new TreeNode(mount.tree, mount.overlay[0].from + scan.from, -1, scan); (layers || (layers = [inner])).push(resolveNode(root, pos, side, false)); } } } return layers ? iterStack(layers) : inner; } /** A tree cursor object focuses on a given node in a syntax tree, and allows you to move to adjacent nodes. */ class TreeCursor { /** Shorthand for `.type.name`. */ get name() { return this.type.name; } /** @internal */ constructor(node, /** @internal */ mode = 0) { this.mode = mode; /** @internal */ this.buffer = null; this.stack = []; /** @internal */ this.index = 0; this.bufferNode = null; if (node instanceof TreeNode) { this.yieldNode(node); } else { this._tree = node.context.parent; this.buffer = node.context; for (let n = node._parent; n; n = n._parent) this.stack.unshift(n.index); this.bufferNode = node; this.yieldBuf(node.index); } } yieldNode(node) { if (!node) return false; this._tree = node; this.type = node.type; this.from = node.from; this.to = node.to; return true; } yieldBuf(index, type) { this.index = index; let { start, buffer } = this.buffer; this.type = type || buffer.set.types[buffer.buffer[index]]; this.from = start + buffer.buffer[index + 1]; this.to = start + buffer.buffer[index + 2]; return true; } /** @internal */ yield(node) { if (!node) return false; if (node instanceof TreeNode) { this.buffer = null; return this.yieldNode(node); } this.buffer = node.context; return this.yieldBuf(node.index, node.type); } /** @internal */ toString() { return this.buffer ? this.buffer.buffer.childString(this.index) : this._tree.toString(); } /** @internal */ enterChild(dir, pos, side) { if (!this.buffer) return this.yield(this._tree.nextChild(dir < 0 ? this._tree._tree.children.length - 1 : 0, dir, pos, side, this.mode)); let { buffer } = this.buffer; let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.buffer.start, side); if (index < 0) return false; this.stack.push(this.index); return this.yieldBuf(index); } /** Move the cursor to this node's first child. When this returns false, the node has no child, and the cursor has not been moved. */ firstChild() { return this.enterChild(1, 0, 4 /* Side.DontCare */); } /** Move the cursor to this node's last child. */ lastChild() { return this.enterChild(-1, 0, 4 /* Side.DontCare */); } /** Move the cursor to the first child that ends after `pos`. */ childAfter(pos) { return this.enterChild(1, pos, 2 /* Side.After */); } /** Move to the last child that starts before `pos`. */ childBefore(pos) { return this.enterChild(-1, pos, -2 /* Side.Before */); } /** Move the cursor to the child around `pos`. If side is -1 the child may end at that position, when 1 it may start there. This will also enter [overlaid](#common.MountedTree.overlay) [mounted](#common.NodeProp^mounted) trees unless `overlays` is set to false. */ enter(pos, side, mode = this.mode) { if (!this.buffer) return this.yield(this._tree.enter(pos, side, mode)); return mode & IterMode.ExcludeBuffers ? false : this.enterChild(1, pos, side); } /** Move to the node's parent node, if this isn't the top node. */ parent() { if (!this.buffer) return this.yieldNode((this.mode & IterMode.IncludeAnonymous) ? this._tree._parent : this._tree.parent); if (this.stack.length) return this.yieldBuf(this.stack.pop()); let parent = (this.mode & IterMode.IncludeAnonymous) ? this.buffer.parent : this.buffer.parent.nextSignificantParent(); this.buffer = null; return this.yieldNode(parent); } /** @internal */ sibling(dir) { if (!this.buffer) return !this._tree._parent ? false : this.yield(this._tree.index < 0 ? null : this._tree._parent.nextChild(this._tree.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode)); let { buffer } = this.buffer, d = this.stack.length - 1; if (dir < 0) { let parentStart = d < 0 ? 0 : this.stack[d] + 4; if (this.index != parentStart) return this.yieldBuf(buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */)); } else { let after = buffer.buffer[this.index + 3]; if (after < (d < 0 ? buffer.buffer.length : buffer.buffer[this.stack[d] + 3])) return this.yieldBuf(after); } return d < 0 ? this.yield(this.buffer.parent.nextChild(this.buffer.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode)) : false; } /** Move to this node's next sibling, if any. */ nextSibling() { return this.sibling(1); } /** Move to this node's previous sibling, if any. */ prevSibling() { return this.sibling(-1); } atLastNode(dir) { let index, parent, { buffer } = this; if (buffer) { if (dir > 0) { if (this.index < buffer.buffer.buffer.length) return false; } else { for (let i = 0; i < this.index; i++) if (buffer.buffer.buffer[i + 3] < this.index) return false; } ({ index, parent } = buffer); } else { ({ index, _parent: parent } = this._tree); } for (; parent; { index, _parent: parent } = parent) { if (index > -1) for (let i = index + dir, e = dir < 0 ? -1 : parent._tree.children.length; i != e; i += dir) { let child = parent._tree.children[i]; if ((this.mode & IterMode.IncludeAnonymous) || child instanceof TreeBuffer || !child.type.isAnonymous || hasChild(child)) return false; } } return true; } move(dir, enter) { if (enter && this.enterChild(dir, 0, 4 /* Side.DontCare */)) return true; for (; ;) { if (this.sibling(dir)) return true; if (this.atLastNode(dir) || !this.parent()) return false; } } /** Move to the next node in a [pre-order](https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR) traversal, going from a node to its first child or, if the current node is empty or `enter` is false, its next sibling or the next sibling of the first parent node that has one. */ next(enter = true) { return this.move(1, enter); } /** Move to the next node in a last-to-first pre-order traveral. A node is followed by its last child or, if it has none, its previous sibling or the previous sibling of the first parent node that has one. */ prev(enter = true) { return this.move(-1, enter); } /** Move the cursor to the innermost node that covers `pos`. If `side` is -1, it will enter nodes that end at `pos`. If it is 1, it will enter nodes that start at `pos`. */ moveTo(pos, side = 0) { // Move up to a node that actually holds the position, if possible while (this.from == this.to || (side < 1 ? this.from >= pos : this.from > pos) || (side > -1 ? this.to <= pos : this.to < pos)) if (!this.parent()) break; // Then scan down into child nodes as far as possible while (this.enterChild(1, pos, side)) { } return this; } /** Get a [syntax node](#common.SyntaxNode) at the cursor's current position. */ get node() { if (!this.buffer) return this._tree; let cache = this.bufferNode, result = null, depth = 0; if (cache && cache.context == this.buffer) { scan: for (let index = this.index, d = this.stack.length; d >= 0;) { for (let c = cache; c; c = c._parent) if (c.index == index) { if (index == this.index) return c; result = c; depth = d + 1; break scan; } index = this.stack[--d]; } } for (let i = depth; i < this.stack.length; i++) result = new BufferNode(this.buffer, result, this.stack[i]); return this.bufferNode = new BufferNode(this.buffer, result, this.index); } /** Get the [tree](#common.Tree) that represents the current node, if any. Will return null when the node is in a [tree buffer](#common.TreeBuffer). */ get tree() { return this.buffer ? null : this._tree._tree; } /** Iterate over the current node and all its descendants, calling `enter` when entering a node and `leave`, if given, when leaving one. When `enter` returns `false`, any children of that node are skipped, and `leave` isn't called for it. */ iterate(enter, leave) { for (let depth = 0; ;) { let mustLeave = false; if (this.type.isAnonymous || enter(this) !== false) { if (this.firstChild()) { depth++; continue; } if (!this.type.isAnonymous) mustLeave = true; } for (; ;) { if (mustLeave && leave) leave(this); mustLeave = this.type.isAnonymous; if (this.nextSibling()) break; if (!depth) return; this.parent(); depth--; mustLeave = true; } } } /** Test whether the current node matches a given context—a sequence of direct parent node names. Empty strings in the context array are treated as wildcards. */ matchContext(context) { if (!this.buffer) return matchNodeContext(this.node, context); let { buffer } = this.buffer, { types } = buffer.set; for (let i = context.length - 1, d = this.stack.length - 1; i >= 0; d--) { if (d < 0) return matchNodeContext(this.node, context, i); let type = types[buffer.buffer[this.stack[d]]]; if (!type.isAnonymous) { if (context[i] && context[i] != type.name) return false; i--; } } return true; } } function hasChild(tree) { return tree.children.some(ch => ch instanceof TreeBuffer || !ch.type.isAnonymous || hasChild(ch)); } function buildTree(data) { var _a; let { buffer, nodeSet, maxBufferLength = DefaultBufferLength, reused = [], minRepeatType = nodeSet.types.length } = data; let cursor = Array.isArray(buffer) ? new FlatBufferCursor(buffer, buffer.length) : buffer; let types = nodeSet.types; let contextHash = 0, lookAhead = 0; function takeNode(parentStart, minPos, children, positions, inRepeat, depth) { let { id, start, end, size } = cursor; let lookAheadAtStart = lookAhead; while (size < 0) { cursor.next(); if (size == -1 /* SpecialRecord.Reuse */) { let node = reused[id]; children.push(node); positions.push(start - parentStart); return; } else if (size == -3 /* SpecialRecord.ContextChange */) { // Context change contextHash = id; return; } else if (size == -4 /* SpecialRecord.LookAhead */) { lookAhead = id; return; } else { throw new RangeError(`Unrecognized record size: ${size}`); } } let type = types[id], node, buffer; let startPos = start - parentStart; if (end - start <= maxBufferLength && (buffer = findBufferSize(cursor.pos - minPos, inRepeat))) { // Small enough for a buffer, and no reused nodes inside let data = new Uint16Array(buffer.size - buffer.skip); let endPos = cursor.pos - buffer.size, index = data.length; while (cursor.pos > endPos) index = copyToBuffer(buffer.start, data, index); node = new TreeBuffer(data, end - buffer.start, nodeSet); startPos = buffer.start - parentStart; } else { // Make it a node let endPos = cursor.pos - size; cursor.next(); let localChildren = [], localPositions = []; let localInRepeat = id >= minRepeatType ? id : -1; let lastGroup = 0, lastEnd = end; while (cursor.pos > endPos) { if (localInRepeat >= 0 && cursor.id == localInRepeat && cursor.size >= 0) { if (cursor.end <= lastEnd - maxBufferLength) { makeRepeatLeaf(localChildren, localPositions, start, lastGroup, cursor.end, lastEnd, localInRepeat, lookAheadAtStart); lastGroup = localChildren.length; lastEnd = cursor.end; } cursor.next(); } else if (depth > 2500 /* CutOff.Depth */) { takeFlatNode(start, endPos, localChildren, localPositions); } else { takeNode(start, endPos, localChildren, localPositions, localInRepeat, depth + 1); } } if (localInRepeat >= 0 && lastGroup > 0 && lastGroup < localChildren.length) makeRepeatLeaf(localChildren, localPositions, start, lastGroup, start, lastEnd, localInRepeat, lookAheadAtStart); localChildren.reverse(); localPositions.reverse(); if (localInRepeat > -1 && lastGroup > 0) { let make = makeBalanced(type); node = balanceRange(type, localChildren, localPositions, 0, localChildren.length, 0, end - start, make, make); } else { node = makeTree(type, localChildren, localPositions, end - start, lookAheadAtStart - end); } } children.push(node); positions.push(startPos); } function takeFlatNode(parentStart, minPos, children, positions) { let nodes = []; // Temporary, inverted array of leaf nodes found, with absolute positions let nodeCount = 0, stopAt = -1; while (cursor.pos > minPos) { let { id, start, end, size } = cursor; if (size > 4) { // Not a leaf cursor.next(); } else if (stopAt > -1 && start < stopAt) { break; } else { if (stopAt < 0) stopAt = end - maxBufferLength; nodes.push(id, start, end); nodeCount++; cursor.next(); } } if (nodeCount) { let buffer = new Uint16Array(nodeCount * 4); let start = nodes[nodes.length - 2]; for (let i = nodes.length - 3, j = 0; i >= 0; i -= 3) { buffer[j++] = nodes[i]; buffer[j++] = nodes[i + 1] - start; buffer[j++] = nodes[i + 2] - start; buffer[j++] = j; } children.push(new TreeBuffer(buffer, nodes[2] - start, nodeSet)); positions.push(start - parentStart); } } function makeBalanced(type) { return (children, positions, length) => { let lookAhead = 0, lastI = children.length - 1, last, lookAheadProp; if (lastI >= 0 && (last = children[lastI]) instanceof Tree) { if (!lastI && last.type == type && last.length == length) return last; if (lookAheadProp = last.prop(NodeProp.lookAhead)) lookAhead = positions[lastI] + last.length + lookAheadProp; } return makeTree(type, children, positions, length, lookAhead); }; } function makeRepeatLeaf(children, positions, base, i, from, to, type, lookAhead) { let localChildren = [], localPositions = []; while (children.length > i) { localChildren.push(children.pop()); localPositions.push(positions.pop() + base - from); } children.push(makeTree(nodeSet.types[type], localChildren, localPositions, to - from, lookAhead - to)); positions.push(from - base); } function makeTree(type, children, positions, length, lookAhead = 0, props) { if (contextHash) { let pair = [NodeProp.contextHash, contextHash]; props = props ? [pair].concat(props) : [pair]; } if (lookAhead > 25) { let pair = [NodeProp.lookAhead, lookAhead]; props = props ? [pair].concat(props) : [pair]; } return new Tree(type, children, positions, length, props); } function findBufferSize(maxSize, inRepeat) { // Scan through the buffer to find previous siblings that fit // together in a TreeBuffer, and don't contain any reused nodes // (which can't be stored in a buffer). // If `inRepeat` is > -1, ignore node boundaries of that type for // nesting, but make sure the end falls either at the start // (`maxSize`) or before such a node. let fork = cursor.fork(); let size = 0, start = 0, skip = 0, minStart = fork.end - maxBufferLength; let result = { size: 0, start: 0, skip: 0 }; scan: for (let minPos = fork.pos - maxSize; fork.pos > minPos;) { let nodeSize = fork.size; // Pretend nested repeat nodes of the same type don't exist if (fork.id == inRepeat && nodeSize >= 0) { // Except that we store the current state as a valid return // value. result.size = size; result.start = start; result.skip = skip; skip += 4; size += 4; fork.next(); continue; } let startPos = fork.pos - nodeSize; if (nodeSize < 0 || startPos < minPos || fork.start < minStart) break; let localSkipped = fork.id >= minRepeatType ? 4 : 0; let nodeStart = fork.start; fork.next(); while (fork.pos > startPos) { if (fork.size < 0) { if (fork.size == -3 /* SpecialRecord.ContextChange */) localSkipped += 4; else break scan; } else if (fork.id >= minRepeatType) { localSkipped += 4; } fork.next(); } start = nodeStart; size += nodeSize; skip += localSkipped; } if (inRepeat < 0 || size == maxSize) { result.size = size; result.start = start; result.skip = skip; } return result.size > 4 ? result : undefined; } function copyToBuffer(bufferStart, buffer, index) { let { id, start, end, size } = cursor; cursor.next(); if (size >= 0 && id < minRepeatType) { let startIndex = index; if (size > 4) { let endPos = cursor.pos - (size - 4); while (cursor.pos > endPos) index = copyToBuffer(bufferStart, buffer, index); } buffer[--index] = startIndex; buffer[--index] = end - bufferStart; buffer[--index] = start - bufferStart; buffer[--index] = id; } else if (size == -3 /* SpecialRecord.ContextChange */) { contextHash = id; } else if (size == -4 /* SpecialRecord.LookAhead */) { lookAhead = id; } return index; } let children = [], positions = []; while (cursor.pos > 0) takeNode(data.start || 0, data.bufferStart || 0, children, positions, -1, 0); let length = (_a = data.length) !== null && _a !== void 0 ? _a : (children.length ? positions[0] + children[0].length : 0); return new Tree(types[data.topID], children.reverse(), positions.reverse(), length); } const nodeSizeCache = new WeakMap; function nodeSize(balanceType, node) { if (!balanceType.isAnonymous || node instanceof TreeBuffer || node.type != balanceType) return 1; let size = nodeSizeCache.get(node); if (size == null) { size = 1; for (let child of node.children) { if (child.type != balanceType || !(child instanceof Tree)) { size = 1; break; } size += nodeSize(balanceType, child); } nodeSizeCache.set(node, size); } return size; } function balanceRange( // The type the balanced tree's inner nodes. balanceType, // The direct children and their positions children, positions, // The index range in children/positions to use from, to, // The start position of the nodes, relative to their parent. start, // Length of the outer node length, // Function to build the top node of the balanced tree mkTop, // Function to build internal nodes for the balanced tree mkTree) { let total = 0; for (let i = from; i < to; i++) total += nodeSize(balanceType, children[i]); let maxChild = Math.ceil((total * 1.5) / 8 /* Balance.BranchFactor */); let localChildren = [], localPositions = []; function divide(children, positions, from, to, offset) { for (let i = from; i < to;) { let groupFrom = i, groupStart = positions[i], groupSize = nodeSize(balanceType, children[i]); i++; for (; i < to; i++) { let nextSize = nodeSize(balanceType, children[i]); if (groupSize + nextSize >= maxChild) break; groupSize += nextSize; } if (i == groupFrom + 1) { if (groupSize > maxChild) { let only = children[groupFrom]; // Only trees can have a size > 1 divide(only.children, only.positions, 0, only.children.length, positions[groupFrom] + offset); continue; } localChildren.push(children[groupFrom]); } else { let length = positions[i - 1] + children[i - 1].length - groupStart; localChildren.push(balanceRange(balanceType, children, positions, groupFrom, i, groupStart, length, null, mkTree)); } localPositions.push(groupStart + offset - start); } } divide(children, positions, from, to, 0); return (mkTop || mkTree)(localChildren, localPositions, length); } /** Provides a way to associate values with pieces of trees. As long as that part of the tree is reused, the associated values can be retrieved from an updated tree. */ class NodeWeakMap { constructor() { this.map = new WeakMap(); } setBuffer(buffer, index, value) { let inner = this.map.get(buffer); if (!inner) this.map.set(buffer, inner = new Map); inner.set(index, value); } getBuffer(buffer, index) { let inner = this.map.get(buffer); return inner && inner.get(index); } /** Set the value for this syntax node. */ set(node, value) { if (node instanceof BufferNode) this.setBuffer(node.context.buffer, node.index, value); else if (node instanceof TreeNode) this.map.set(node.tree, value); } /** Retrieve value for this syntax node, if it exists in the map. */ get(node) { return node instanceof BufferNode ? this.getBuffer(node.context.buffer, node.index) : node instanceof TreeNode ? this.map.get(node.tree) : undefined; } /** Set the value for the node that a cursor currently points to. */ cursorSet(cursor, value) { if (cursor.buffer) this.setBuffer(cursor.buffer.buffer, cursor.index, value); else this.map.set(cursor.tree, value); } /** Retrieve the value for the node that a cursor currently points to. */ cursorGet(cursor) { return cursor.buffer ? this.getBuffer(cursor.buffer.buffer, cursor.index) : this.map.get(cursor.tree); } } /** Tree fragments are used during [incremental parsing](#common.Parser.startParse) to track parts of old trees that can be reused in a new parse. An array of fragments is used to track regions of an old tree whose nodes might be reused in new parses. Use the static [`applyChanges`](#common.TreeFragment^applyChanges) method to update fragments for document changes. */ class TreeFragment { /** Construct a tree fragment. You'll usually want to use [`addTree`](#common.TreeFragment^addTree) and [`applyChanges`](#common.TreeFragment^applyChanges) instead of calling this directly. */ constructor( /** The start of the unchanged range pointed to by this fragment. This refers to an offset in the _updated_ document (as opposed to the original tree). */ from, /** The end of the unchanged range. */ to, /** The tree that this fragment is based on. */ tree, /** The offset between the fragment's tree and the document that this fragment can be used against. Add this when going from document to tree positions, subtract it to go from tree to document positions. */ offset, openStart = false, openEnd = false) { this.from = from; this.to = to; this.tree = tree; this.offset = offset; this.open = (openStart ? 1 /* Open.Start */ : 0) | (openEnd ? 2 /* Open.End */ : 0); } /** Whether the start of the fragment represents the start of a parse, or the end of a change. (In the second case, it may not be safe to reuse some nodes at the start, depending on the parsing algorithm.) */ get openStart() { return (this.open & 1 /* Open.Start */) > 0; } /** Whether the end of the fragment represents the end of a full-document parse, or the start of a change. */ get openEnd() { return (this.open & 2 /* Open.End */) > 0; } /** Create a set of fragments from a freshly parsed tree, or update an existing set of fragments by replacing the ones that overlap with a tree with content from the new tree. When `partial` is true, the parse is treated as incomplete, and the resulting fragment has [`openEnd`](#common.TreeFragment.openEnd) set to true. */ static addTree(tree, fragments = [], partial = false) { let result = [new TreeFragment(0, tree.length, tree, 0, false, partial)]; for (let f of fragments) if (f.to > tree.length) result.push(f); return result; } /** Apply a set of edits to an array of fragments, removing or splitting fragments as necessary to remove edited ranges, and adjusting offsets for fragments that moved. */ static applyChanges(fragments, changes, minGap = 128) { if (!changes.length) return fragments; let result = []; let fI = 1, nextF = fragments.length ? fragments[0] : null; for (let cI = 0, pos = 0, off = 0; ; cI++) { let nextC = cI < changes.length ? changes[cI] : null; let nextPos = nextC ? nextC.fromA : 1e9; if (nextPos - pos >= minGap) while (nextF && nextF.from < nextPos) { let cut = nextF; if (pos >= cut.from || nextPos <= cut.to || off) { let fFrom = Math.max(cut.from, pos) - off, fTo = Math.min(cut.to, nextPos) - off; cut = fFrom >= fTo ? null : new TreeFragment(fFrom, fTo, cut.tree, cut.offset + off, cI > 0, !!nextC); } if (cut) result.push(cut); if (nextF.to > nextPos) break; nextF = fI < fragments.length ? fragments[fI++] : null; } if (!nextC) break; pos = nextC.toA; off = nextC.toA - nextC.toB; } return result; } } /** A superclass that parsers should extend. */ class Parser { /** Start a parse, returning a [partial parse](#common.PartialParse) object. [`fragments`](#common.TreeFragment) can be passed in to make the parse incremental. By default, the entire input is parsed. You can pass `ranges`, which should be a sorted array of non-empty, non-overlapping ranges, to parse only those ranges. The tree returned in that case will start at `ranges[0].from`. */ startParse(input, fragments, ranges) { if (typeof input == "string") input = new StringInput(input); ranges = !ranges ? [new Range$1(0, input.length)] : ranges.length ? ranges.map(r => new Range$1(r.from, r.to)) : [new Range$1(0, 0)]; return this.createParse(input, fragments || [], ranges); } /** Run a full parse, returning the resulting tree. */ parse(input, fragments, ranges) { let parse = this.startParse(input, fragments, ranges); for (; ;) { let done = parse.advance(); if (done) return done; } } } class StringInput { constructor(string) { this.string = string; } get length() { return this.string.length; } chunk(from) { return this.string.slice(from); } get lineChunks() { return false; } read(from, to) { return this.string.slice(from, to); } } new NodeProp({ perNode: true }); let nextTagID = 0; /** Highlighting tags are markers that denote a highlighting category. They are [associated](#highlight.styleTags) with parts of a syntax tree by a language mode, and then mapped to an actual CSS style by a [highlighter](#highlight.Highlighter). Because syntax tree node types and highlight styles have to be able to talk the same language, CodeMirror uses a mostly _closed_ [vocabulary](#highlight.tags) of syntax tags (as opposed to traditional open string-based systems, which make it hard for highlighting themes to cover all the tokens produced by the various languages). It _is_ possible to [define](#highlight.Tag^define) your own highlighting tags for system-internal use (where you control both the language package and the highlighter), but such tags will not be picked up by regular highlighters (though you can derive them from standard tags to allow highlighters to fall back to those). */ class Tag { /** @internal */ constructor( /** The set of this tag and all its parent tags, starting with this one itself and sorted in order of decreasing specificity. */ set, /** The base unmodified tag that this one is based on, if it's modified @internal */ base, /** The modifiers applied to this.base @internal */ modified) { this.set = set; this.base = base; this.modified = modified; /** @internal */ this.id = nextTagID++; } /** Define a new tag. If `parent` is given, the tag is treated as a sub-tag of that parent, and [highlighters](#highlight.tagHighlighter) that don't mention this tag will try to fall back to the parent tag (or grandparent tag, etc). */ static define(parent) { if (parent === null || parent === void 0 ? void 0 : parent.base) throw new Error("Can not derive from a modified tag"); let tag = new Tag([], null, []); tag.set.push(tag); if (parent) for (let t of parent.set) tag.set.push(t); return tag; } /** Define a tag _modifier_, which is a function that, given a tag, will return a tag that is a subtag of the original. Applying the same modifier to a twice tag will return the same value (`m1(t1) == m1(t1)`) and applying multiple modifiers will, regardless or order, produce the same tag (`m1(m2(t1)) == m2(m1(t1))`). When multiple modifiers are applied to a given base tag, each smaller set of modifiers is registered as a parent, so that for example `m1(m2(m3(t1)))` is a subtype of `m1(m2(t1))`, `m1(m3(t1)`, and so on. */ static defineModifier() { let mod = new Modifier; return (tag) => { if (tag.modified.indexOf(mod) > -1) return tag; return Modifier.get(tag.base || tag, tag.modified.concat(mod).sort((a, b) => a.id - b.id)); }; } } let nextModifierID = 0; class Modifier { constructor() { this.instances = []; this.id = nextModifierID++; } static get(base, mods) { if (!mods.length) return base; let exists = mods[0].instances.find(t => t.base == base && sameArray$1(mods, t.modified)); if (exists) return exists; let set = [], tag = new Tag(set, base, mods); for (let m of mods) m.instances.push(tag); let configs = powerSet(mods); for (let parent of base.set) if (!parent.modified.length) for (let config of configs) set.push(Modifier.get(parent, config)); return tag; } } function sameArray$1(a, b) { return a.length == b.length && a.every((x, i) => x == b[i]); } function powerSet(array) { let sets = [[]]; for (let i = 0; i < array.length; i++) { for (let j = 0, e = sets.length; j < e; j++) { sets.push(sets[j].concat(array[i])); } } return sets.sort((a, b) => b.length - a.length); } /** This function is used to add a set of tags to a language syntax via [`NodeSet.extend`](#common.NodeSet.extend) or [`LRParser.configure`](#lr.LRParser.configure). The argument object maps node selectors to [highlighting tags](#highlight.Tag) or arrays of tags. Node selectors may hold one or more (space-separated) node paths. Such a path can be a [node name](#common.NodeType.name), or multiple node names (or `*` wildcards) separated by slash characters, as in `"Block/Declaration/VariableName"`. Such a path matches the final node but only if its direct parent nodes are the other nodes mentioned. A `*` in such a path matches any parent, but only a single level—wildcards that match multiple parents aren't supported, both for efficiency reasons and because Lezer trees make it rather hard to reason about what they would match.) A path can be ended with `/...` to indicate that the tag assigned to the node should also apply to all child nodes, even if they match their own style (by default, only the innermost style is used). When a path ends in `!`, as in `Attribute!`, no further matching happens for the node's child nodes, and the entire node gets the given style. In this notation, node names that contain `/`, `!`, `*`, or `...` must be quoted as JSON strings. For example: ```javascript parser.withProps( styleTags({ // Style Number and BigNumber nodes "Number BigNumber": tags.number, // Style Escape nodes whose parent is String "String/Escape": tags.escape, // Style anything inside Attributes nodes "Attributes!": tags.meta, // Add a style to all content inside Italic nodes "Italic/...": tags.emphasis, // Style InvalidString nodes as both `string` and `invalid` "InvalidString": [tags.string, tags.invalid], // Style the node named "/" as punctuation '"/"': tags.punctuation }) ) ``` */ function styleTags(spec) { let byName = Object.create(null); for (let prop in spec) { let tags = spec[prop]; if (!Array.isArray(tags)) tags = [tags]; for (let part of prop.split(" ")) if (part) { let pieces = [], mode = 2 /* Mode.Normal */, rest = part; for (let pos = 0; ;) { if (rest == "..." && pos > 0 && pos + 3 == part.length) { mode = 1 /* Mode.Inherit */; break; } let m = /^"(?:[^"\\]|\\.)*?"|[^\/!]+/.exec(rest); if (!m) throw new RangeError("Invalid path: " + part); pieces.push(m[0] == "*" ? "" : m[0][0] == '"' ? JSON.parse(m[0]) : m[0]); pos += m[0].length; if (pos == part.length) break; let next = part[pos++]; if (pos == part.length && next == "!") { mode = 0 /* Mode.Opaque */; break; } if (next != "/") throw new RangeError("Invalid path: " + part); rest = part.slice(pos); } let last = pieces.length - 1, inner = pieces[last]; if (!inner) throw new RangeError("Invalid path: " + part); let rule = new Rule(tags, mode, last > 0 ? pieces.slice(0, last) : null); byName[inner] = rule.sort(byName[inner]); } } return ruleNodeProp.add(byName); } const ruleNodeProp = new NodeProp(); class Rule { constructor(tags, mode, context, next) { this.tags = tags; this.mode = mode; this.context = context; this.next = next; } get opaque() { return this.mode == 0 /* Mode.Opaque */; } get inherit() { return this.mode == 1 /* Mode.Inherit */; } sort(other) { if (!other || other.depth < this.depth) { this.next = other; return this; } other.next = this.sort(other.next); return other; } get depth() { return this.context ? this.context.length : 0; } } Rule.empty = new Rule([], 2 /* Mode.Normal */, null); /** Define a [highlighter](#highlight.Highlighter) from an array of tag/class pairs. Classes associated with more specific tags will take precedence. */ function tagHighlighter(tags, options) { let map = Object.create(null); for (let style of tags) { if (!Array.isArray(style.tag)) map[style.tag.id] = style.class; else for (let tag of style.tag) map[tag.id] = style.class; } let { scope, all = null } = options || {}; return { style: (tags) => { let cls = all; for (let tag of tags) { for (let sub of tag.set) { let tagClass = map[sub.id]; if (tagClass) { cls = cls ? cls + " " + tagClass : tagClass; break; } } } return cls; }, scope }; } function highlightTags(highlighters, tags) { let result = null; for (let highlighter of highlighters) { let value = highlighter.style(tags); if (value) result = result ? result + " " + value : value; } return result; } /** Highlight the given [tree](#common.Tree) with the given [highlighter](#highlight.Highlighter). Often, the higher-level [`highlightCode`](#highlight.highlightCode) function is easier to use. */ function highlightTree(tree, highlighter, /** Assign styling to a region of the text. Will be called, in order of position, for any ranges where more than zero classes apply. `classes` is a space separated string of CSS classes. */ putStyle, /** The start of the range to highlight. */ from = 0, /** The end of the range. */ to = tree.length) { let builder = new HighlightBuilder(from, Array.isArray(highlighter) ? highlighter : [highlighter], putStyle); builder.highlightRange(tree.cursor(), from, to, "", builder.highlighters); builder.flush(to); } class HighlightBuilder { constructor(at, highlighters, span) { this.at = at; this.highlighters = highlighters; this.span = span; this.class = ""; } startSpan(at, cls) { if (cls != this.class) { this.flush(at); if (at > this.at) this.at = at; this.class = cls; } } flush(to) { if (to > this.at && this.class) this.span(this.at, to, this.class); } highlightRange(cursor, from, to, inheritedClass, highlighters) { let { type, from: start, to: end } = cursor; if (start >= to || end <= from) return; if (type.isTop) highlighters = this.highlighters.filter(h => !h.scope || h.scope(type)); let cls = inheritedClass; let rule = getStyleTags(cursor) || Rule.empty; let tagCls = highlightTags(highlighters, rule.tags); if (tagCls) { if (cls) cls += " "; cls += tagCls; if (rule.mode == 1 /* Mode.Inherit */) inheritedClass += (inheritedClass ? " " : "") + tagCls; } this.startSpan(Math.max(from, start), cls); if (rule.opaque) return; let mounted = cursor.tree && cursor.tree.prop(NodeProp.mounted); if (mounted && mounted.overlay) { let inner = cursor.node.enter(mounted.overlay[0].from + start, 1); let innerHighlighters = this.highlighters.filter(h => !h.scope || h.scope(mounted.tree.type)); let hasChild = cursor.firstChild(); for (let i = 0, pos = start; ; i++) { let next = i < mounted.overlay.length ? mounted.overlay[i] : null; let nextPos = next ? next.from + start : end; let rangeFrom = Math.max(from, pos), rangeTo = Math.min(to, nextPos); if (rangeFrom < rangeTo && hasChild) { while (cursor.from < rangeTo) { this.highlightRange(cursor, rangeFrom, rangeTo, inheritedClass, highlighters); this.startSpan(Math.min(rangeTo, cursor.to), cls); if (cursor.to >= nextPos || !cursor.nextSibling()) break; } } if (!next || nextPos > to) break; pos = next.to + start; if (pos > from) { this.highlightRange(inner.cursor(), Math.max(from, next.from + start), Math.min(to, pos), "", innerHighlighters); this.startSpan(Math.min(to, pos), cls); } } if (hasChild) cursor.parent(); } else if (cursor.firstChild()) { if (mounted) inheritedClass = ""; do { if (cursor.to <= from) continue; if (cursor.from >= to) break; this.highlightRange(cursor, from, to, inheritedClass, highlighters); this.startSpan(Math.min(to, cursor.to), cls); } while (cursor.nextSibling()); cursor.parent(); } } } /** Match a syntax node's [highlight rules](#highlight.styleTags). If there's a match, return its set of tags, and whether it is opaque (uses a `!`) or applies to all child nodes (`/...`). */ function getStyleTags(node) { let rule = node.type.prop(ruleNodeProp); while (rule && rule.context && !node.matchContext(rule.context)) rule = rule.next; return rule || null; } const t = Tag.define; const comment = t(), name = t(), typeName = t(name), propertyName = t(name), literal = t(), string = t(literal), number = t(literal), content = t(), heading = t(content), keyword = t(), operator = t(), punctuation = t(), bracket = t(punctuation), meta = t(); /** The default set of highlighting [tags](#highlight.Tag). This collection is heavily biased towards programming languages, and necessarily incomplete. A full ontology of syntactic constructs would fill a stack of books, and be impractical to write themes for. So try to make do with this set. If all else fails, [open an issue](https://github.com/codemirror/codemirror.next) to propose a new tag, or [define](#highlight.Tag^define) a local custom tag for your use case. Note that it is not obligatory to always attach the most specific tag possible to an element—if your grammar can't easily distinguish a certain type of element (such as a local variable), it is okay to style it as its more general variant (a variable). For tags that extend some parent tag, the documentation links to the parent. */ const tags = { /** A comment. */ comment, /** A line [comment](#highlight.tags.comment). */ lineComment: t(comment), /** A block [comment](#highlight.tags.comment). */ blockComment: t(comment), /** A documentation [comment](#highlight.tags.comment). */ docComment: t(comment), /** Any kind of identifier. */ name, /** The [name](#highlight.tags.name) of a variable. */ variableName: t(name), /** A type [name](#highlight.tags.name). */ typeName: typeName, /** A tag name (subtag of [`typeName`](#highlight.tags.typeName)). */ tagName: t(typeName), /** A property or field [name](#highlight.tags.name). */ propertyName: propertyName, /** An attribute name (subtag of [`propertyName`](#highlight.tags.propertyName)). */ attributeName: t(propertyName), /** The [name](#highlight.tags.name) of a class. */ className: t(name), /** A label [name](#highlight.tags.name). */ labelName: t(name), /** A namespace [name](#highlight.tags.name). */ namespace: t(name), /** The [name](#highlight.tags.name) of a macro. */ macroName: t(name), /** A literal value. */ literal, /** A string [literal](#highlight.tags.literal). */ string, /** A documentation [string](#highlight.tags.string). */ docString: t(string), /** A character literal (subtag of [string](#highlight.tags.string)). */ character: t(string), /** An attribute value (subtag of [string](#highlight.tags.string)). */ attributeValue: t(string), /** A number [literal](#highlight.tags.literal). */ number, /** An integer [number](#highlight.tags.number) literal. */ integer: t(number), /** A floating-point [number](#highlight.tags.number) literal. */ float: t(number), /** A boolean [literal](#highlight.tags.literal). */ bool: t(literal), /** Regular expression [literal](#highlight.tags.literal). */ regexp: t(literal), /** An escape [literal](#highlight.tags.literal), for example a backslash escape in a string. */ escape: t(literal), /** A color [literal](#highlight.tags.literal). */ color: t(literal), /** A URL [literal](#highlight.tags.literal). */ url: t(literal), /** A language keyword. */ keyword, /** The [keyword](#highlight.tags.keyword) for the self or this object. */ self: t(keyword), /** The [keyword](#highlight.tags.keyword) for null. */ null: t(keyword), /** A [keyword](#highlight.tags.keyword) denoting some atomic value. */ atom: t(keyword), /** A [keyword](#highlight.tags.keyword) that represents a unit. */ unit: t(keyword), /** A modifier [keyword](#highlight.tags.keyword). */ modifier: t(keyword), /** A [keyword](#highlight.tags.keyword) that acts as an operator. */ operatorKeyword: t(keyword), /** A control-flow related [keyword](#highlight.tags.keyword). */ controlKeyword: t(keyword), /** A [keyword](#highlight.tags.keyword) that defines something. */ definitionKeyword: t(keyword), /** A [keyword](#highlight.tags.keyword) related to defining or interfacing with modules. */ moduleKeyword: t(keyword), /** An operator. */ operator, /** An [operator](#highlight.tags.operator) that dereferences something. */ derefOperator: t(operator), /** Arithmetic-related [operator](#highlight.tags.operator). */ arithmeticOperator: t(operator), /** Logical [operator](#highlight.tags.operator). */ logicOperator: t(operator), /** Bit [operator](#highlight.tags.operator). */ bitwiseOperator: t(operator), /** Comparison [operator](#highlight.tags.operator). */ compareOperator: t(operator), /** [Operator](#highlight.tags.operator) that updates its operand. */ updateOperator: t(operator), /** [Operator](#highlight.tags.operator) that defines something. */ definitionOperator: t(operator), /** Type-related [operator](#highlight.tags.operator). */ typeOperator: t(operator), /** Control-flow [operator](#highlight.tags.operator). */ controlOperator: t(operator), /** Program or markup punctuation. */ punctuation, /** [Punctuation](#highlight.tags.punctuation) that separates things. */ separator: t(punctuation), /** Bracket-style [punctuation](#highlight.tags.punctuation). */ bracket, /** Angle [brackets](#highlight.tags.bracket) (usually `<` and `>` tokens). */ angleBracket: t(bracket), /** Square [brackets](#highlight.tags.bracket) (usually `[` and `]` tokens). */ squareBracket: t(bracket), /** Parentheses (usually `(` and `)` tokens). Subtag of [bracket](#highlight.tags.bracket). */ paren: t(bracket), /** Braces (usually `{` and `}` tokens). Subtag of [bracket](#highlight.tags.bracket). */ brace: t(bracket), /** Content, for example plain text in XML or markup documents. */ content, /** [Content](#highlight.tags.content) that represents a heading. */ heading, /** A level 1 [heading](#highlight.tags.heading). */ heading1: t(heading), /** A level 2 [heading](#highlight.tags.heading). */ heading2: t(heading), /** A level 3 [heading](#highlight.tags.heading). */ heading3: t(heading), /** A level 4 [heading](#highlight.tags.heading). */ heading4: t(heading), /** A level 5 [heading](#highlight.tags.heading). */ heading5: t(heading), /** A level 6 [heading](#highlight.tags.heading). */ heading6: t(heading), /** A prose separator (such as a horizontal rule). */ contentSeparator: t(content), /** [Content](#highlight.tags.content) that represents a list. */ list: t(content), /** [Content](#highlight.tags.content) that represents a quote. */ quote: t(content), /** [Content](#highlight.tags.content) that is emphasized. */ emphasis: t(content), /** [Content](#highlight.tags.content) that is styled strong. */ strong: t(content), /** [Content](#highlight.tags.content) that is part of a link. */ link: t(content), /** [Content](#highlight.tags.content) that is styled as code or monospace. */ monospace: t(content), /** [Content](#highlight.tags.content) that has a strike-through style. */ strikethrough: t(content), /** Inserted text in a change-tracking format. */ inserted: t(), /** Deleted text. */ deleted: t(), /** Changed text. */ changed: t(), /** An invalid or unsyntactic element. */ invalid: t(), /** Metadata or meta-instruction. */ meta, /** [Metadata](#highlight.tags.meta) that applies to the entire document. */ documentMeta: t(meta), /** [Metadata](#highlight.tags.meta) that annotates or adds attributes to a given syntactic element. */ annotation: t(meta), /** Processing instruction or preprocessor directive. Subtag of [meta](#highlight.tags.meta). */ processingInstruction: t(meta), /** [Modifier](#highlight.Tag^defineModifier) that indicates that a given element is being defined. Expected to be used with the various [name](#highlight.tags.name) tags. */ definition: Tag.defineModifier(), /** [Modifier](#highlight.Tag^defineModifier) that indicates that something is constant. Mostly expected to be used with [variable names](#highlight.tags.variableName). */ constant: Tag.defineModifier(), /** [Modifier](#highlight.Tag^defineModifier) used to indicate that a [variable](#highlight.tags.variableName) or [property name](#highlight.tags.propertyName) is being called or defined as a function. */ function: Tag.defineModifier(), /** [Modifier](#highlight.Tag^defineModifier) that can be applied to [names](#highlight.tags.name) to indicate that they belong to the language's standard environment. */ standard: Tag.defineModifier(), /** [Modifier](#highlight.Tag^defineModifier) that indicates a given [names](#highlight.tags.name) is local to some scope. */ local: Tag.defineModifier(), /** A generic variant [modifier](#highlight.Tag^defineModifier) that can be used to tag language-specific alternative variants of some common tag. It is recommended for themes to define special forms of at least the [string](#highlight.tags.string) and [variable name](#highlight.tags.variableName) tags, since those come up a lot. */ special: Tag.defineModifier() }; /** This is a highlighter that adds stable, predictable classes to tokens, for styling with external CSS. The following tags are mapped to their name prefixed with `"tok-"` (for example `"tok-comment"`): * [`link`](#highlight.tags.link) * [`heading`](#highlight.tags.heading) * [`emphasis`](#highlight.tags.emphasis) * [`strong`](#highlight.tags.strong) * [`keyword`](#highlight.tags.keyword) * [`atom`](#highlight.tags.atom) * [`bool`](#highlight.tags.bool) * [`url`](#highlight.tags.url) * [`labelName`](#highlight.tags.labelName) * [`inserted`](#highlight.tags.inserted) * [`deleted`](#highlight.tags.deleted) * [`literal`](#highlight.tags.literal) * [`string`](#highlight.tags.string) * [`number`](#highlight.tags.number) * [`variableName`](#highlight.tags.variableName) * [`typeName`](#highlight.tags.typeName) * [`namespace`](#highlight.tags.namespace) * [`className`](#highlight.tags.className) * [`macroName`](#highlight.tags.macroName) * [`propertyName`](#highlight.tags.propertyName) * [`operator`](#highlight.tags.operator) * [`comment`](#highlight.tags.comment) * [`meta`](#highlight.tags.meta) * [`punctuation`](#highlight.tags.punctuation) * [`invalid`](#highlight.tags.invalid) In addition, these mappings are provided: * [`regexp`](#highlight.tags.regexp), [`escape`](#highlight.tags.escape), and [`special`](#highlight.tags.special)[`(string)`](#highlight.tags.string) are mapped to `"tok-string2"` * [`special`](#highlight.tags.special)[`(variableName)`](#highlight.tags.variableName) to `"tok-variableName2"` * [`local`](#highlight.tags.local)[`(variableName)`](#highlight.tags.variableName) to `"tok-variableName tok-local"` * [`definition`](#highlight.tags.definition)[`(variableName)`](#highlight.tags.variableName) to `"tok-variableName tok-definition"` * [`definition`](#highlight.tags.definition)[`(propertyName)`](#highlight.tags.propertyName) to `"tok-propertyName tok-definition"` */ tagHighlighter([ { tag: tags.link, class: "tok-link" }, { tag: tags.heading, class: "tok-heading" }, { tag: tags.emphasis, class: "tok-emphasis" }, { tag: tags.strong, class: "tok-strong" }, { tag: tags.keyword, class: "tok-keyword" }, { tag: tags.atom, class: "tok-atom" }, { tag: tags.bool, class: "tok-bool" }, { tag: tags.url, class: "tok-url" }, { tag: tags.labelName, class: "tok-labelName" }, { tag: tags.inserted, class: "tok-inserted" }, { tag: tags.deleted, class: "tok-deleted" }, { tag: tags.literal, class: "tok-literal" }, { tag: tags.string, class: "tok-string" }, { tag: tags.number, class: "tok-number" }, { tag: [tags.regexp, tags.escape, tags.special(tags.string)], class: "tok-string2" }, { tag: tags.variableName, class: "tok-variableName" }, { tag: tags.local(tags.variableName), class: "tok-variableName tok-local" }, { tag: tags.definition(tags.variableName), class: "tok-variableName tok-definition" }, { tag: tags.special(tags.variableName), class: "tok-variableName2" }, { tag: tags.definition(tags.propertyName), class: "tok-propertyName tok-definition" }, { tag: tags.typeName, class: "tok-typeName" }, { tag: tags.namespace, class: "tok-namespace" }, { tag: tags.className, class: "tok-className" }, { tag: tags.macroName, class: "tok-macroName" }, { tag: tags.propertyName, class: "tok-propertyName" }, { tag: tags.operator, class: "tok-operator" }, { tag: tags.comment, class: "tok-comment" }, { tag: tags.meta, class: "tok-meta" }, { tag: tags.invalid, class: "tok-invalid" }, { tag: tags.punctuation, class: "tok-punctuation" } ]); /** The data structure for documents. @nonabstract */ class Text { /** Get the line description around the given position. */ lineAt(pos) { if (pos < 0 || pos > this.length) throw new RangeError(`Invalid position ${pos} in document of length ${this.length}`); return this.lineInner(pos, false, 1, 0); } /** Get the description for the given (1-based) line number. */ line(n) { if (n < 1 || n > this.lines) throw new RangeError(`Invalid line number ${n} in ${this.lines}-line document`); return this.lineInner(n, true, 1, 0); } /** Replace a range of the text with the given content. */ replace(from, to, text) { [from, to] = clip(this, from, to); let parts = []; this.decompose(0, from, parts, 2 /* Open.To */); if (text.length) text.decompose(0, text.length, parts, 1 /* Open.From */ | 2 /* Open.To */); this.decompose(to, this.length, parts, 1 /* Open.From */); return TextNode.from(parts, this.length - (to - from) + text.length); } /** Append another document to this one. */ append(other) { return this.replace(this.length, this.length, other); } /** Retrieve the text between the given points. */ slice(from, to = this.length) { [from, to] = clip(this, from, to); let parts = []; this.decompose(from, to, parts, 0); return TextNode.from(parts, to - from); } /** Test whether this text is equal to another instance. */ eq(other) { if (other == this) return true; if (other.length != this.length || other.lines != this.lines) return false; let start = this.scanIdentical(other, 1), end = this.length - this.scanIdentical(other, -1); let a = new RawTextCursor(this), b = new RawTextCursor(other); for (let skip = start, pos = start; ;) { a.next(skip); b.next(skip); skip = 0; if (a.lineBreak != b.lineBreak || a.done != b.done || a.value != b.value) return false; pos += a.value.length; if (a.done || pos >= end) return true; } } /** Iterate over the text. When `dir` is `-1`, iteration happens from end to start. This will return lines and the breaks between them as separate strings. */ iter(dir = 1) { return new RawTextCursor(this, dir); } /** Iterate over a range of the text. When `from` > `to`, the iterator will run in reverse. */ iterRange(from, to = this.length) { return new PartialTextCursor(this, from, to); } /** Return a cursor that iterates over the given range of lines, _without_ returning the line breaks between, and yielding empty strings for empty lines. When `from` and `to` are given, they should be 1-based line numbers. */ iterLines(from, to) { let inner; if (from == null) { inner = this.iter(); } else { if (to == null) to = this.lines + 1; let start = this.line(from).from; inner = this.iterRange(start, Math.max(start, to == this.lines + 1 ? this.length : to <= 1 ? 0 : this.line(to - 1).to)); } return new LineCursor(inner); } /** Return the document as a string, using newline characters to separate lines. */ toString() { return this.sliceString(0); } /** Convert the document to an array of lines (which can be deserialized again via [`Text.of`](https://codemirror.net/6/docs/ref/#state.Text^of)). */ toJSON() { let lines = []; this.flatten(lines); return lines; } /** @internal */ constructor() { } /** Create a `Text` instance for the given array of lines. */ static of(text) { if (text.length == 0) throw new RangeError("A document must have at least one line"); if (text.length == 1 && !text[0]) return Text.empty; return text.length <= 32 /* Tree.Branch */ ? new TextLeaf(text) : TextNode.from(TextLeaf.split(text, [])); } } // Leaves store an array of line strings. There are always line breaks // between these strings. Leaves are limited in size and have to be // contained in TextNode instances for bigger documents. class TextLeaf extends Text { constructor(text, length = textLength(text)) { super(); this.text = text; this.length = length; } get lines() { return this.text.length; } get children() { return null; } lineInner(target, isLine, line, offset) { for (let i = 0; ; i++) { let string = this.text[i], end = offset + string.length; if ((isLine ? line : end) >= target) return new Line(offset, end, line, string); offset = end + 1; line++; } } decompose(from, to, target, open) { let text = from <= 0 && to >= this.length ? this : new TextLeaf(sliceText(this.text, from, to), Math.min(to, this.length) - Math.max(0, from)); if (open & 1 /* Open.From */) { let prev = target.pop(); let joined = appendText(text.text, prev.text.slice(), 0, text.length); if (joined.length <= 32 /* Tree.Branch */) { target.push(new TextLeaf(joined, prev.length + text.length)); } else { let mid = joined.length >> 1; target.push(new TextLeaf(joined.slice(0, mid)), new TextLeaf(joined.slice(mid))); } } else { target.push(text); } } replace(from, to, text) { if (!(text instanceof TextLeaf)) return super.replace(from, to, text); [from, to] = clip(this, from, to); let lines = appendText(this.text, appendText(text.text, sliceText(this.text, 0, from)), to); let newLen = this.length + text.length - (to - from); if (lines.length <= 32 /* Tree.Branch */) return new TextLeaf(lines, newLen); return TextNode.from(TextLeaf.split(lines, []), newLen); } sliceString(from, to = this.length, lineSep = "\n") { [from, to] = clip(this, from, to); let result = ""; for (let pos = 0, i = 0; pos <= to && i < this.text.length; i++) { let line = this.text[i], end = pos + line.length; if (pos > from && i) result += lineSep; if (from < end && to > pos) result += line.slice(Math.max(0, from - pos), to - pos); pos = end + 1; } return result; } flatten(target) { for (let line of this.text) target.push(line); } scanIdentical() { return 0; } static split(text, target) { let part = [], len = -1; for (let line of text) { part.push(line); len += line.length + 1; if (part.length == 32 /* Tree.Branch */) { target.push(new TextLeaf(part, len)); part = []; len = -1; } } if (len > -1) target.push(new TextLeaf(part, len)); return target; } } // Nodes provide the tree structure of the `Text` type. They store a // number of other nodes or leaves, taking care to balance themselves // on changes. There are implied line breaks _between_ the children of // a node (but not before the first or after the last child). class TextNode extends Text { constructor(children, length) { super(); this.children = children; this.length = length; this.lines = 0; for (let child of children) this.lines += child.lines; } lineInner(target, isLine, line, offset) { for (let i = 0; ; i++) { let child = this.children[i], end = offset + child.length, endLine = line + child.lines - 1; if ((isLine ? endLine : end) >= target) return child.lineInner(target, isLine, line, offset); offset = end + 1; line = endLine + 1; } } decompose(from, to, target, open) { for (let i = 0, pos = 0; pos <= to && i < this.children.length; i++) { let child = this.children[i], end = pos + child.length; if (from <= end && to >= pos) { let childOpen = open & ((pos <= from ? 1 /* Open.From */ : 0) | (end >= to ? 2 /* Open.To */ : 0)); if (pos >= from && end <= to && !childOpen) target.push(child); else child.decompose(from - pos, to - pos, target, childOpen); } pos = end + 1; } } replace(from, to, text) { [from, to] = clip(this, from, to); if (text.lines < this.lines) for (let i = 0, pos = 0; i < this.children.length; i++) { let child = this.children[i], end = pos + child.length; // Fast path: if the change only affects one child and the // child's size remains in the acceptable range, only update // that child if (from >= pos && to <= end) { let updated = child.replace(from - pos, to - pos, text); let totalLines = this.lines - child.lines + updated.lines; if (updated.lines < (totalLines >> (5 /* Tree.BranchShift */ - 1)) && updated.lines > (totalLines >> (5 /* Tree.BranchShift */ + 1))) { let copy = this.children.slice(); copy[i] = updated; return new TextNode(copy, this.length - (to - from) + text.length); } return super.replace(pos, end, updated); } pos = end + 1; } return super.replace(from, to, text); } sliceString(from, to = this.length, lineSep = "\n") { [from, to] = clip(this, from, to); let result = ""; for (let i = 0, pos = 0; i < this.children.length && pos <= to; i++) { let child = this.children[i], end = pos + child.length; if (pos > from && i) result += lineSep; if (from < end && to > pos) result += child.sliceString(from - pos, to - pos, lineSep); pos = end + 1; } return result; } flatten(target) { for (let child of this.children) child.flatten(target); } scanIdentical(other, dir) { if (!(other instanceof TextNode)) return 0; let length = 0; let [iA, iB, eA, eB] = dir > 0 ? [0, 0, this.children.length, other.children.length] : [this.children.length - 1, other.children.length - 1, -1, -1]; for (; ; iA += dir, iB += dir) { if (iA == eA || iB == eB) return length; let chA = this.children[iA], chB = other.children[iB]; if (chA != chB) return length + chA.scanIdentical(chB, dir); length += chA.length + 1; } } static from(children, length = children.reduce((l, ch) => l + ch.length + 1, -1)) { let lines = 0; for (let ch of children) lines += ch.lines; if (lines < 32 /* Tree.Branch */) { let flat = []; for (let ch of children) ch.flatten(flat); return new TextLeaf(flat, length); } let chunk = Math.max(32 /* Tree.Branch */, lines >> 5 /* Tree.BranchShift */), maxChunk = chunk << 1, minChunk = chunk >> 1; let chunked = [], currentLines = 0, currentLen = -1, currentChunk = []; function add(child) { let last; if (child.lines > maxChunk && child instanceof TextNode) { for (let node of child.children) add(node); } else if (child.lines > minChunk && (currentLines > minChunk || !currentLines)) { flush(); chunked.push(child); } else if (child instanceof TextLeaf && currentLines && (last = currentChunk[currentChunk.length - 1]) instanceof TextLeaf && child.lines + last.lines <= 32 /* Tree.Branch */) { currentLines += child.lines; currentLen += child.length + 1; currentChunk[currentChunk.length - 1] = new TextLeaf(last.text.concat(child.text), last.length + 1 + child.length); } else { if (currentLines + child.lines > chunk) flush(); currentLines += child.lines; currentLen += child.length + 1; currentChunk.push(child); } } function flush() { if (currentLines == 0) return; chunked.push(currentChunk.length == 1 ? currentChunk[0] : TextNode.from(currentChunk, currentLen)); currentLen = -1; currentLines = currentChunk.length = 0; } for (let child of children) add(child); flush(); return chunked.length == 1 ? chunked[0] : new TextNode(chunked, length); } } Text.empty = /*@__PURE__*/new TextLeaf([""], 0); function textLength(text) { let length = -1; for (let line of text) length += line.length + 1; return length; } function appendText(text, target, from = 0, to = 1e9) { for (let pos = 0, i = 0, first = true; i < text.length && pos <= to; i++) { let line = text[i], end = pos + line.length; if (end >= from) { if (end > to) line = line.slice(0, to - pos); if (pos < from) line = line.slice(from - pos); if (first) { target[target.length - 1] += line; first = false; } else target.push(line); } pos = end + 1; } return target; } function sliceText(text, from, to) { return appendText(text, [""], from, to); } class RawTextCursor { constructor(text, dir = 1) { this.dir = dir; this.done = false; this.lineBreak = false; this.value = ""; this.nodes = [text]; this.offsets = [dir > 0 ? 1 : (text instanceof TextLeaf ? text.text.length : text.children.length) << 1]; } nextInner(skip, dir) { this.done = this.lineBreak = false; for (; ;) { let last = this.nodes.length - 1; let top = this.nodes[last], offsetValue = this.offsets[last], offset = offsetValue >> 1; let size = top instanceof TextLeaf ? top.text.length : top.children.length; if (offset == (dir > 0 ? size : 0)) { if (last == 0) { this.done = true; this.value = ""; return this; } if (dir > 0) this.offsets[last - 1]++; this.nodes.pop(); this.offsets.pop(); } else if ((offsetValue & 1) == (dir > 0 ? 0 : 1)) { this.offsets[last] += dir; if (skip == 0) { this.lineBreak = true; this.value = "\n"; return this; } skip--; } else if (top instanceof TextLeaf) { // Move to the next string let next = top.text[offset + (dir < 0 ? -1 : 0)]; this.offsets[last] += dir; if (next.length > Math.max(0, skip)) { this.value = skip == 0 ? next : dir > 0 ? next.slice(skip) : next.slice(0, next.length - skip); return this; } skip -= next.length; } else { let next = top.children[offset + (dir < 0 ? -1 : 0)]; if (skip > next.length) { skip -= next.length; this.offsets[last] += dir; } else { if (dir < 0) this.offsets[last]--; this.nodes.push(next); this.offsets.push(dir > 0 ? 1 : (next instanceof TextLeaf ? next.text.length : next.children.length) << 1); } } } } next(skip = 0) { if (skip < 0) { this.nextInner(-skip, (-this.dir)); skip = this.value.length; } return this.nextInner(skip, this.dir); } } class PartialTextCursor { constructor(text, start, end) { this.value = ""; this.done = false; this.cursor = new RawTextCursor(text, start > end ? -1 : 1); this.pos = start > end ? text.length : 0; this.from = Math.min(start, end); this.to = Math.max(start, end); } nextInner(skip, dir) { if (dir < 0 ? this.pos <= this.from : this.pos >= this.to) { this.value = ""; this.done = true; return this; } skip += Math.max(0, dir < 0 ? this.pos - this.to : this.from - this.pos); let limit = dir < 0 ? this.pos - this.from : this.to - this.pos; if (skip > limit) skip = limit; limit -= skip; let { value } = this.cursor.next(skip); this.pos += (value.length + skip) * dir; this.value = value.length <= limit ? value : dir < 0 ? value.slice(value.length - limit) : value.slice(0, limit); this.done = !this.value; return this; } next(skip = 0) { if (skip < 0) skip = Math.max(skip, this.from - this.pos); else if (skip > 0) skip = Math.min(skip, this.to - this.pos); return this.nextInner(skip, this.cursor.dir); } get lineBreak() { return this.cursor.lineBreak && this.value != ""; } } class LineCursor { constructor(inner) { this.inner = inner; this.afterBreak = true; this.value = ""; this.done = false; } next(skip = 0) { let { done, lineBreak, value } = this.inner.next(skip); if (done && this.afterBreak) { this.value = ""; this.afterBreak = false; } else if (done) { this.done = true; this.value = ""; } else if (lineBreak) { if (this.afterBreak) { this.value = ""; } else { this.afterBreak = true; this.next(); } } else { this.value = value; this.afterBreak = false; } return this; } get lineBreak() { return false; } } if (typeof Symbol != "undefined") { Text.prototype[Symbol.iterator] = function () { return this.iter(); }; RawTextCursor.prototype[Symbol.iterator] = PartialTextCursor.prototype[Symbol.iterator] = LineCursor.prototype[Symbol.iterator] = function () { return this; }; } /** This type describes a line in the document. It is created on-demand when lines are [queried](https://codemirror.net/6/docs/ref/#state.Text.lineAt). */ class Line { /** @internal */ constructor( /** The position of the start of the line. */ from, /** The position at the end of the line (_before_ the line break, or at the end of document for the last line). */ to, /** This line's line number (1-based). */ number, /** The line's content. */ text) { this.from = from; this.to = to; this.number = number; this.text = text; } /** The length of the line (not including any line break after it). */ get length() { return this.to - this.from; } } function clip(text, from, to) { from = Math.max(0, Math.min(text.length, from)); return [from, Math.max(from, Math.min(text.length, to))]; } // Compressed representation of the Grapheme_Cluster_Break=Extend // information from // http://www.unicode.org/Public/13.0.0/ucd/auxiliary/GraphemeBreakProperty.txt. // Each pair of elements represents a range, as an offet from the // previous range and a length. Numbers are in base-36, with the empty // string being a shorthand for 1. let extend = /*@__PURE__*/"lc,34,7n,7,7b,19,,,,2,,2,,,20,b,1c,l,g,,2t,7,2,6,2,2,,4,z,,u,r,2j,b,1m,9,9,,o,4,,9,,3,,5,17,3,3b,f,,w,1j,,,,4,8,4,,3,7,a,2,t,,1m,,,,2,4,8,,9,,a,2,q,,2,2,1l,,4,2,4,2,2,3,3,,u,2,3,,b,2,1l,,4,5,,2,4,,k,2,m,6,,,1m,,,2,,4,8,,7,3,a,2,u,,1n,,,,c,,9,,14,,3,,1l,3,5,3,,4,7,2,b,2,t,,1m,,2,,2,,3,,5,2,7,2,b,2,s,2,1l,2,,,2,4,8,,9,,a,2,t,,20,,4,,2,3,,,8,,29,,2,7,c,8,2q,,2,9,b,6,22,2,r,,,,,,1j,e,,5,,2,5,b,,10,9,,2u,4,,6,,2,2,2,p,2,4,3,g,4,d,,2,2,6,,f,,jj,3,qa,3,t,3,t,2,u,2,1s,2,,7,8,,2,b,9,,19,3,3b,2,y,,3a,3,4,2,9,,6,3,63,2,2,,1m,,,7,,,,,2,8,6,a,2,,1c,h,1r,4,1c,7,,,5,,14,9,c,2,w,4,2,2,,3,1k,,,2,3,,,3,1m,8,2,2,48,3,,d,,7,4,,6,,3,2,5i,1m,,5,ek,,5f,x,2da,3,3x,,2o,w,fe,6,2x,2,n9w,4,,a,w,2,28,2,7k,,3,,4,,p,2,5,,47,2,q,i,d,,12,8,p,b,1a,3,1c,,2,4,2,2,13,,1v,6,2,2,2,2,c,,8,,1b,,1f,,,3,2,2,5,2,,,16,2,8,,6m,,2,,4,,fn4,,kh,g,g,g,a6,2,gt,,6a,,45,5,1ae,3,,2,5,4,14,3,4,,4l,2,fx,4,ar,2,49,b,4w,,1i,f,1k,3,1d,4,2,2,1x,3,10,5,,8,1q,,c,2,1g,9,a,4,2,,2n,3,2,,,2,6,,4g,,3,8,l,2,1l,2,,,,,m,,e,7,3,5,5f,8,2,3,,,n,,29,,2,6,,,2,,,2,,2,6j,,2,4,6,2,,2,r,2,2d,8,2,,,2,2y,,,,2,6,,,2t,3,2,4,,5,77,9,,2,6t,,a,2,,,4,,40,4,2,2,4,,w,a,14,6,2,4,8,,9,6,2,3,1a,d,,2,ba,7,,6,,,2a,m,2,7,,2,,2,3e,6,3,,,2,,7,,,20,2,3,,,,9n,2,f0b,5,1n,7,t4,,1r,4,29,,f5k,2,43q,,,3,4,5,8,8,2,7,u,4,44,3,1iz,1j,4,1e,8,,e,,m,5,,f,11s,7,,h,2,7,,2,,5,79,7,c5,4,15s,7,31,7,240,5,gx7k,2o,3k,6o".split(",").map(s => s ? parseInt(s, 36) : 1); // Convert offsets into absolute values for (let i = 1; i < extend.length; i++) extend[i] += extend[i - 1]; function isExtendingChar(code) { for (let i = 1; i < extend.length; i += 2) if (extend[i] > code) return extend[i - 1] <= code; return false; } function isRegionalIndicator(code) { return code >= 0x1F1E6 && code <= 0x1F1FF; } const ZWJ = 0x200d; /** Returns a next grapheme cluster break _after_ (not equal to) `pos`, if `forward` is true, or before otherwise. Returns `pos` itself if no further cluster break is available in the string. Moves across surrogate pairs, extending characters (when `includeExtending` is true), characters joined with zero-width joiners, and flag emoji. */ function findClusterBreak(str, pos, forward = true, includeExtending = true) { return (forward ? nextClusterBreak : prevClusterBreak)(str, pos, includeExtending); } function nextClusterBreak(str, pos, includeExtending) { if (pos == str.length) return pos; // If pos is in the middle of a surrogate pair, move to its start if (pos && surrogateLow(str.charCodeAt(pos)) && surrogateHigh(str.charCodeAt(pos - 1))) pos--; let prev = codePointAt(str, pos); pos += codePointSize(prev); while (pos < str.length) { let next = codePointAt(str, pos); if (prev == ZWJ || next == ZWJ || includeExtending && isExtendingChar(next)) { pos += codePointSize(next); prev = next; } else if (isRegionalIndicator(next)) { let countBefore = 0, i = pos - 2; while (i >= 0 && isRegionalIndicator(codePointAt(str, i))) { countBefore++; i -= 2; } if (countBefore % 2 == 0) break; else pos += 2; } else { break; } } return pos; } function prevClusterBreak(str, pos, includeExtending) { while (pos > 0) { let found = nextClusterBreak(str, pos - 2, includeExtending); if (found < pos) return found; pos--; } return 0; } function surrogateLow(ch) { return ch >= 0xDC00 && ch < 0xE000; } function surrogateHigh(ch) { return ch >= 0xD800 && ch < 0xDC00; } /** Find the code point at the given position in a string (like the [`codePointAt`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/codePointAt) string method). */ function codePointAt(str, pos) { let code0 = str.charCodeAt(pos); if (!surrogateHigh(code0) || pos + 1 == str.length) return code0; let code1 = str.charCodeAt(pos + 1); if (!surrogateLow(code1)) return code0; return ((code0 - 0xd800) << 10) + (code1 - 0xdc00) + 0x10000; } /** Given a Unicode codepoint, return the JavaScript string that respresents it (like [`String.fromCodePoint`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCodePoint)). */ function fromCodePoint(code) { if (code <= 0xffff) return String.fromCharCode(code); code -= 0x10000; return String.fromCharCode((code >> 10) + 0xd800, (code & 1023) + 0xdc00); } /** The amount of positions a character takes up a JavaScript string. */ function codePointSize(code) { return code < 0x10000 ? 1 : 2; } const DefaultSplit = /\r\n?|\n/; /** Distinguishes different ways in which positions can be mapped. */ var MapMode = /*@__PURE__*/(function (MapMode) { /** Map a position to a valid new position, even when its context was deleted. */ MapMode[MapMode["Simple"] = 0] = "Simple"; /** Return null if deletion happens across the position. */ MapMode[MapMode["TrackDel"] = 1] = "TrackDel"; /** Return null if the character _before_ the position is deleted. */ MapMode[MapMode["TrackBefore"] = 2] = "TrackBefore"; /** Return null if the character _after_ the position is deleted. */ MapMode[MapMode["TrackAfter"] = 3] = "TrackAfter"; return MapMode })(MapMode || (MapMode = {})); /** A change description is a variant of [change set](https://codemirror.net/6/docs/ref/#state.ChangeSet) that doesn't store the inserted text. As such, it can't be applied, but is cheaper to store and manipulate. */ class ChangeDesc { // Sections are encoded as pairs of integers. The first is the // length in the current document, and the second is -1 for // unaffected sections, and the length of the replacement content // otherwise. So an insertion would be (0, n>0), a deletion (n>0, // 0), and a replacement two positive numbers. /** @internal */ constructor( /** @internal */ sections) { this.sections = sections; } /** The length of the document before the change. */ get length() { let result = 0; for (let i = 0; i < this.sections.length; i += 2) result += this.sections[i]; return result; } /** The length of the document after the change. */ get newLength() { let result = 0; for (let i = 0; i < this.sections.length; i += 2) { let ins = this.sections[i + 1]; result += ins < 0 ? this.sections[i] : ins; } return result; } /** False when there are actual changes in this set. */ get empty() { return this.sections.length == 0 || this.sections.length == 2 && this.sections[1] < 0; } /** Iterate over the unchanged parts left by these changes. `posA` provides the position of the range in the old document, `posB` the new position in the changed document. */ iterGaps(f) { for (let i = 0, posA = 0, posB = 0; i < this.sections.length;) { let len = this.sections[i++], ins = this.sections[i++]; if (ins < 0) { f(posA, posB, len); posB += len; } else { posB += ins; } posA += len; } } /** Iterate over the ranges changed by these changes. (See [`ChangeSet.iterChanges`](https://codemirror.net/6/docs/ref/#state.ChangeSet.iterChanges) for a variant that also provides you with the inserted text.) `fromA`/`toA` provides the extent of the change in the starting document, `fromB`/`toB` the extent of the replacement in the changed document. When `individual` is true, adjacent changes (which are kept separate for [position mapping](https://codemirror.net/6/docs/ref/#state.ChangeDesc.mapPos)) are reported separately. */ iterChangedRanges(f, individual = false) { iterChanges(this, f, individual); } /** Get a description of the inverted form of these changes. */ get invertedDesc() { let sections = []; for (let i = 0; i < this.sections.length;) { let len = this.sections[i++], ins = this.sections[i++]; if (ins < 0) sections.push(len, ins); else sections.push(ins, len); } return new ChangeDesc(sections); } /** Compute the combined effect of applying another set of changes after this one. The length of the document after this set should match the length before `other`. */ composeDesc(other) { return this.empty ? other : other.empty ? this : composeSets(this, other); } /** Map this description, which should start with the same document as `other`, over another set of changes, so that it can be applied after it. When `before` is true, map as if the changes in `other` happened before the ones in `this`. */ mapDesc(other, before = false) { return other.empty ? this : mapSet(this, other, before); } mapPos(pos, assoc = -1, mode = MapMode.Simple) { let posA = 0, posB = 0; for (let i = 0; i < this.sections.length;) { let len = this.sections[i++], ins = this.sections[i++], endA = posA + len; if (ins < 0) { if (endA > pos) return posB + (pos - posA); posB += len; } else { if (mode != MapMode.Simple && endA >= pos && (mode == MapMode.TrackDel && posA < pos && endA > pos || mode == MapMode.TrackBefore && posA < pos || mode == MapMode.TrackAfter && endA > pos)) return null; if (endA > pos || endA == pos && assoc < 0 && !len) return pos == posA || assoc < 0 ? posB : posB + ins; posB += ins; } posA = endA; } if (pos > posA) throw new RangeError(`Position ${pos} is out of range for changeset of length ${posA}`); return posB; } /** Check whether these changes touch a given range. When one of the changes entirely covers the range, the string `"cover"` is returned. */ touchesRange(from, to = from) { for (let i = 0, pos = 0; i < this.sections.length && pos <= to;) { let len = this.sections[i++], ins = this.sections[i++], end = pos + len; if (ins >= 0 && pos <= to && end >= from) return pos < from && end > to ? "cover" : true; pos = end; } return false; } /** @internal */ toString() { let result = ""; for (let i = 0; i < this.sections.length;) { let len = this.sections[i++], ins = this.sections[i++]; result += (result ? " " : "") + len + (ins >= 0 ? ":" + ins : ""); } return result; } /** Serialize this change desc to a JSON-representable value. */ toJSON() { return this.sections; } /** Create a change desc from its JSON representation (as produced by [`toJSON`](https://codemirror.net/6/docs/ref/#state.ChangeDesc.toJSON). */ static fromJSON(json) { if (!Array.isArray(json) || json.length % 2 || json.some(a => typeof a != "number")) throw new RangeError("Invalid JSON representation of ChangeDesc"); return new ChangeDesc(json); } /** @internal */ static create(sections) { return new ChangeDesc(sections); } } /** A change set represents a group of modifications to a document. It stores the document length, and can only be applied to documents with exactly that length. */ class ChangeSet extends ChangeDesc { constructor(sections, /** @internal */ inserted) { super(sections); this.inserted = inserted; } /** Apply the changes to a document, returning the modified document. */ apply(doc) { if (this.length != doc.length) throw new RangeError("Applying change set to a document with the wrong length"); iterChanges(this, (fromA, toA, fromB, _toB, text) => doc = doc.replace(fromB, fromB + (toA - fromA), text), false); return doc; } mapDesc(other, before = false) { return mapSet(this, other, before, true); } /** Given the document as it existed _before_ the changes, return a change set that represents the inverse of this set, which could be used to go from the document created by the changes back to the document as it existed before the changes. */ invert(doc) { let sections = this.sections.slice(), inserted = []; for (let i = 0, pos = 0; i < sections.length; i += 2) { let len = sections[i], ins = sections[i + 1]; if (ins >= 0) { sections[i] = ins; sections[i + 1] = len; let index = i >> 1; while (inserted.length < index) inserted.push(Text.empty); inserted.push(len ? doc.slice(pos, pos + len) : Text.empty); } pos += len; } return new ChangeSet(sections, inserted); } /** Combine two subsequent change sets into a single set. `other` must start in the document produced by `this`. If `this` goes `docA` → `docB` and `other` represents `docB` → `docC`, the returned value will represent the change `docA` → `docC`. */ compose(other) { return this.empty ? other : other.empty ? this : composeSets(this, other, true); } /** Given another change set starting in the same document, maps this change set over the other, producing a new change set that can be applied to the document produced by applying `other`. When `before` is `true`, order changes as if `this` comes before `other`, otherwise (the default) treat `other` as coming first. Given two changes `A` and `B`, `A.compose(B.map(A))` and `B.compose(A.map(B, true))` will produce the same document. This provides a basic form of [operational transformation](https://en.wikipedia.org/wiki/Operational_transformation), and can be used for collaborative editing. */ map(other, before = false) { return other.empty ? this : mapSet(this, other, before, true); } /** Iterate over the changed ranges in the document, calling `f` for each, with the range in the original document (`fromA`-`toA`) and the range that replaces it in the new document (`fromB`-`toB`). When `individual` is true, adjacent changes are reported separately. */ iterChanges(f, individual = false) { iterChanges(this, f, individual); } /** Get a [change description](https://codemirror.net/6/docs/ref/#state.ChangeDesc) for this change set. */ get desc() { return ChangeDesc.create(this.sections); } /** @internal */ filter(ranges) { let resultSections = [], resultInserted = [], filteredSections = []; let iter = new SectionIter(this); done: for (let i = 0, pos = 0; ;) { let next = i == ranges.length ? 1e9 : ranges[i++]; while (pos < next || pos == next && iter.len == 0) { if (iter.done) break done; let len = Math.min(iter.len, next - pos); addSection(filteredSections, len, -1); let ins = iter.ins == -1 ? -1 : iter.off == 0 ? iter.ins : 0; addSection(resultSections, len, ins); if (ins > 0) addInsert(resultInserted, resultSections, iter.text); iter.forward(len); pos += len; } let end = ranges[i++]; while (pos < end) { if (iter.done) break done; let len = Math.min(iter.len, end - pos); addSection(resultSections, len, -1); addSection(filteredSections, len, iter.ins == -1 ? -1 : iter.off == 0 ? iter.ins : 0); iter.forward(len); pos += len; } } return { changes: new ChangeSet(resultSections, resultInserted), filtered: ChangeDesc.create(filteredSections) }; } /** Serialize this change set to a JSON-representable value. */ toJSON() { let parts = []; for (let i = 0; i < this.sections.length; i += 2) { let len = this.sections[i], ins = this.sections[i + 1]; if (ins < 0) parts.push(len); else if (ins == 0) parts.push([len]); else parts.push([len].concat(this.inserted[i >> 1].toJSON())); } return parts; } /** Create a change set for the given changes, for a document of the given length, using `lineSep` as line separator. */ static of(changes, length, lineSep) { let sections = [], inserted = [], pos = 0; let total = null; function flush(force = false) { if (!force && !sections.length) return; if (pos < length) addSection(sections, length - pos, -1); let set = new ChangeSet(sections, inserted); total = total ? total.compose(set.map(total)) : set; sections = []; inserted = []; pos = 0; } function process(spec) { if (Array.isArray(spec)) { for (let sub of spec) process(sub); } else if (spec instanceof ChangeSet) { if (spec.length != length) throw new RangeError(`Mismatched change set length (got ${spec.length}, expected ${length})`); flush(); total = total ? total.compose(spec.map(total)) : spec; } else { let { from, to = from, insert } = spec; if (from > to || from < 0 || to > length) throw new RangeError(`Invalid change range ${from} to ${to} (in doc of length ${length})`); let insText = !insert ? Text.empty : typeof insert == "string" ? Text.of(insert.split(lineSep || DefaultSplit)) : insert; let insLen = insText.length; if (from == to && insLen == 0) return; if (from < pos) flush(); if (from > pos) addSection(sections, from - pos, -1); addSection(sections, to - from, insLen); addInsert(inserted, sections, insText); pos = to; } } process(changes); flush(!total); return total; } /** Create an empty changeset of the given length. */ static empty(length) { return new ChangeSet(length ? [length, -1] : [], []); } /** Create a changeset from its JSON representation (as produced by [`toJSON`](https://codemirror.net/6/docs/ref/#state.ChangeSet.toJSON). */ static fromJSON(json) { if (!Array.isArray(json)) throw new RangeError("Invalid JSON representation of ChangeSet"); let sections = [], inserted = []; for (let i = 0; i < json.length; i++) { let part = json[i]; if (typeof part == "number") { sections.push(part, -1); } else if (!Array.isArray(part) || typeof part[0] != "number" || part.some((e, i) => i && typeof e != "string")) { throw new RangeError("Invalid JSON representation of ChangeSet"); } else if (part.length == 1) { sections.push(part[0], 0); } else { while (inserted.length < i) inserted.push(Text.empty); inserted[i] = Text.of(part.slice(1)); sections.push(part[0], inserted[i].length); } } return new ChangeSet(sections, inserted); } /** @internal */ static createSet(sections, inserted) { return new ChangeSet(sections, inserted); } } function addSection(sections, len, ins, forceJoin = false) { if (len == 0 && ins <= 0) return; let last = sections.length - 2; if (last >= 0 && ins <= 0 && ins == sections[last + 1]) sections[last] += len; else if (len == 0 && sections[last] == 0) sections[last + 1] += ins; else if (forceJoin) { sections[last] += len; sections[last + 1] += ins; } else sections.push(len, ins); } function addInsert(values, sections, value) { if (value.length == 0) return; let index = (sections.length - 2) >> 1; if (index < values.length) { values[values.length - 1] = values[values.length - 1].append(value); } else { while (values.length < index) values.push(Text.empty); values.push(value); } } function iterChanges(desc, f, individual) { let inserted = desc.inserted; for (let posA = 0, posB = 0, i = 0; i < desc.sections.length;) { let len = desc.sections[i++], ins = desc.sections[i++]; if (ins < 0) { posA += len; posB += len; } else { let endA = posA, endB = posB, text = Text.empty; for (; ;) { endA += len; endB += ins; if (ins && inserted) text = text.append(inserted[(i - 2) >> 1]); if (individual || i == desc.sections.length || desc.sections[i + 1] < 0) break; len = desc.sections[i++]; ins = desc.sections[i++]; } f(posA, endA, posB, endB, text); posA = endA; posB = endB; } } } function mapSet(setA, setB, before, mkSet = false) { // Produce a copy of setA that applies to the document after setB // has been applied (assuming both start at the same document). let sections = [], insert = mkSet ? [] : null; let a = new SectionIter(setA), b = new SectionIter(setB); // Iterate over both sets in parallel. inserted tracks, for changes // in A that have to be processed piece-by-piece, whether their // content has been inserted already, and refers to the section // index. for (let inserted = -1; ;) { if (a.ins == -1 && b.ins == -1) { // Move across ranges skipped by both sets. let len = Math.min(a.len, b.len); addSection(sections, len, -1); a.forward(len); b.forward(len); } else if (b.ins >= 0 && (a.ins < 0 || inserted == a.i || a.off == 0 && (b.len < a.len || b.len == a.len && !before))) { // If there's a change in B that comes before the next change in // A (ordered by start pos, then len, then before flag), skip // that (and process any changes in A it covers). let len = b.len; addSection(sections, b.ins, -1); while (len) { let piece = Math.min(a.len, len); if (a.ins >= 0 && inserted < a.i && a.len <= piece) { addSection(sections, 0, a.ins); if (insert) addInsert(insert, sections, a.text); inserted = a.i; } a.forward(piece); len -= piece; } b.next(); } else if (a.ins >= 0) { // Process the part of a change in A up to the start of the next // non-deletion change in B (if overlapping). let len = 0, left = a.len; while (left) { if (b.ins == -1) { let piece = Math.min(left, b.len); len += piece; left -= piece; b.forward(piece); } else if (b.ins == 0 && b.len < left) { left -= b.len; b.next(); } else { break; } } addSection(sections, len, inserted < a.i ? a.ins : 0); if (insert && inserted < a.i) addInsert(insert, sections, a.text); inserted = a.i; a.forward(a.len - left); } else if (a.done && b.done) { return insert ? ChangeSet.createSet(sections, insert) : ChangeDesc.create(sections); } else { throw new Error("Mismatched change set lengths"); } } } function composeSets(setA, setB, mkSet = false) { let sections = []; let insert = mkSet ? [] : null; let a = new SectionIter(setA), b = new SectionIter(setB); for (let open = false; ;) { if (a.done && b.done) { return insert ? ChangeSet.createSet(sections, insert) : ChangeDesc.create(sections); } else if (a.ins == 0) { // Deletion in A addSection(sections, a.len, 0, open); a.next(); } else if (b.len == 0 && !b.done) { // Insertion in B addSection(sections, 0, b.ins, open); if (insert) addInsert(insert, sections, b.text); b.next(); } else if (a.done || b.done) { throw new Error("Mismatched change set lengths"); } else { let len = Math.min(a.len2, b.len), sectionLen = sections.length; if (a.ins == -1) { let insB = b.ins == -1 ? -1 : b.off ? 0 : b.ins; addSection(sections, len, insB, open); if (insert && insB) addInsert(insert, sections, b.text); } else if (b.ins == -1) { addSection(sections, a.off ? 0 : a.len, len, open); if (insert) addInsert(insert, sections, a.textBit(len)); } else { addSection(sections, a.off ? 0 : a.len, b.off ? 0 : b.ins, open); if (insert && !b.off) addInsert(insert, sections, b.text); } open = (a.ins > len || b.ins >= 0 && b.len > len) && (open || sections.length > sectionLen); a.forward2(len); b.forward(len); } } } class SectionIter { constructor(set) { this.set = set; this.i = 0; this.next(); } next() { let { sections } = this.set; if (this.i < sections.length) { this.len = sections[this.i++]; this.ins = sections[this.i++]; } else { this.len = 0; this.ins = -2; } this.off = 0; } get done() { return this.ins == -2; } get len2() { return this.ins < 0 ? this.len : this.ins; } get text() { let { inserted } = this.set, index = (this.i - 2) >> 1; return index >= inserted.length ? Text.empty : inserted[index]; } textBit(len) { let { inserted } = this.set, index = (this.i - 2) >> 1; return index >= inserted.length && !len ? Text.empty : inserted[index].slice(this.off, len == null ? undefined : this.off + len); } forward(len) { if (len == this.len) this.next(); else { this.len -= len; this.off += len; } } forward2(len) { if (this.ins == -1) this.forward(len); else if (len == this.ins) this.next(); else { this.ins -= len; this.off += len; } } } /** A single selection range. When [`allowMultipleSelections`](https://codemirror.net/6/docs/ref/#state.EditorState^allowMultipleSelections) is enabled, a [selection](https://codemirror.net/6/docs/ref/#state.EditorSelection) may hold multiple ranges. By default, selections hold exactly one range. */ class SelectionRange { constructor( /** The lower boundary of the range. */ from, /** The upper boundary of the range. */ to, flags) { this.from = from; this.to = to; this.flags = flags; } /** The anchor of the range—the side that doesn't move when you extend it. */ get anchor() { return this.flags & 32 /* RangeFlag.Inverted */ ? this.to : this.from; } /** The head of the range, which is moved when the range is [extended](https://codemirror.net/6/docs/ref/#state.SelectionRange.extend). */ get head() { return this.flags & 32 /* RangeFlag.Inverted */ ? this.from : this.to; } /** True when `anchor` and `head` are at the same position. */ get empty() { return this.from == this.to; } /** If this is a cursor that is explicitly associated with the character on one of its sides, this returns the side. -1 means the character before its position, 1 the character after, and 0 means no association. */ get assoc() { return this.flags & 8 /* RangeFlag.AssocBefore */ ? -1 : this.flags & 16 /* RangeFlag.AssocAfter */ ? 1 : 0; } /** The bidirectional text level associated with this cursor, if any. */ get bidiLevel() { let level = this.flags & 7 /* RangeFlag.BidiLevelMask */; return level == 7 ? null : level; } /** The goal column (stored vertical offset) associated with a cursor. This is used to preserve the vertical position when [moving](https://codemirror.net/6/docs/ref/#view.EditorView.moveVertically) across lines of different length. */ get goalColumn() { let value = this.flags >> 6 /* RangeFlag.GoalColumnOffset */; return value == 16777215 /* RangeFlag.NoGoalColumn */ ? undefined : value; } /** Map this range through a change, producing a valid range in the updated document. */ map(change, assoc = -1) { let from, to; if (this.empty) { from = to = change.mapPos(this.from, assoc); } else { from = change.mapPos(this.from, 1); to = change.mapPos(this.to, -1); } return from == this.from && to == this.to ? this : new SelectionRange(from, to, this.flags); } /** Extend this range to cover at least `from` to `to`. */ extend(from, to = from) { if (from <= this.anchor && to >= this.anchor) return EditorSelection.range(from, to); let head = Math.abs(from - this.anchor) > Math.abs(to - this.anchor) ? from : to; return EditorSelection.range(this.anchor, head); } /** Compare this range to another range. */ eq(other, includeAssoc = false) { return this.anchor == other.anchor && this.head == other.head && (!includeAssoc || !this.empty || this.assoc == other.assoc); } /** Return a JSON-serializable object representing the range. */ toJSON() { return { anchor: this.anchor, head: this.head }; } /** Convert a JSON representation of a range to a `SelectionRange` instance. */ static fromJSON(json) { if (!json || typeof json.anchor != "number" || typeof json.head != "number") throw new RangeError("Invalid JSON representation for SelectionRange"); return EditorSelection.range(json.anchor, json.head); } /** @internal */ static create(from, to, flags) { return new SelectionRange(from, to, flags); } } /** An editor selection holds one or more selection ranges. */ class EditorSelection { constructor( /** The ranges in the selection, sorted by position. Ranges cannot overlap (but they may touch, if they aren't empty). */ ranges, /** The index of the _main_ range in the selection (which is usually the range that was added last). */ mainIndex) { this.ranges = ranges; this.mainIndex = mainIndex; } /** Map a selection through a change. Used to adjust the selection position for changes. */ map(change, assoc = -1) { if (change.empty) return this; return EditorSelection.create(this.ranges.map(r => r.map(change, assoc)), this.mainIndex); } /** Compare this selection to another selection. By default, ranges are compared only by position. When `includeAssoc` is true, cursor ranges must also have the same [`assoc`](https://codemirror.net/6/docs/ref/#state.SelectionRange.assoc) value. */ eq(other, includeAssoc = false) { if (this.ranges.length != other.ranges.length || this.mainIndex != other.mainIndex) return false; for (let i = 0; i < this.ranges.length; i++) if (!this.ranges[i].eq(other.ranges[i], includeAssoc)) return false; return true; } /** Get the primary selection range. Usually, you should make sure your code applies to _all_ ranges, by using methods like [`changeByRange`](https://codemirror.net/6/docs/ref/#state.EditorState.changeByRange). */ get main() { return this.ranges[this.mainIndex]; } /** Make sure the selection only has one range. Returns a selection holding only the main range from this selection. */ asSingle() { return this.ranges.length == 1 ? this : new EditorSelection([this.main], 0); } /** Extend this selection with an extra range. */ addRange(range, main = true) { return EditorSelection.create([range].concat(this.ranges), main ? 0 : this.mainIndex + 1); } /** Replace a given range with another range, and then normalize the selection to merge and sort ranges if necessary. */ replaceRange(range, which = this.mainIndex) { let ranges = this.ranges.slice(); ranges[which] = range; return EditorSelection.create(ranges, this.mainIndex); } /** Convert this selection to an object that can be serialized to JSON. */ toJSON() { return { ranges: this.ranges.map(r => r.toJSON()), main: this.mainIndex }; } /** Create a selection from a JSON representation. */ static fromJSON(json) { if (!json || !Array.isArray(json.ranges) || typeof json.main != "number" || json.main >= json.ranges.length) throw new RangeError("Invalid JSON representation for EditorSelection"); return new EditorSelection(json.ranges.map((r) => SelectionRange.fromJSON(r)), json.main); } /** Create a selection holding a single range. */ static single(anchor, head = anchor) { return new EditorSelection([EditorSelection.range(anchor, head)], 0); } /** Sort and merge the given set of ranges, creating a valid selection. */ static create(ranges, mainIndex = 0) { if (ranges.length == 0) throw new RangeError("A selection needs at least one range"); for (let pos = 0, i = 0; i < ranges.length; i++) { let range = ranges[i]; if (range.empty ? range.from <= pos : range.from < pos) return EditorSelection.normalized(ranges.slice(), mainIndex); pos = range.to; } return new EditorSelection(ranges, mainIndex); } /** Create a cursor selection range at the given position. You can safely ignore the optional arguments in most situations. */ static cursor(pos, assoc = 0, bidiLevel, goalColumn) { return SelectionRange.create(pos, pos, (assoc == 0 ? 0 : assoc < 0 ? 8 /* RangeFlag.AssocBefore */ : 16 /* RangeFlag.AssocAfter */) | (bidiLevel == null ? 7 : Math.min(6, bidiLevel)) | ((goalColumn !== null && goalColumn !== void 0 ? goalColumn : 16777215 /* RangeFlag.NoGoalColumn */) << 6 /* RangeFlag.GoalColumnOffset */)); } /** Create a selection range. */ static range(anchor, head, goalColumn, bidiLevel) { let flags = ((goalColumn !== null && goalColumn !== void 0 ? goalColumn : 16777215 /* RangeFlag.NoGoalColumn */) << 6 /* RangeFlag.GoalColumnOffset */) | (bidiLevel == null ? 7 : Math.min(6, bidiLevel)); return head < anchor ? SelectionRange.create(head, anchor, 32 /* RangeFlag.Inverted */ | 16 /* RangeFlag.AssocAfter */ | flags) : SelectionRange.create(anchor, head, (head > anchor ? 8 /* RangeFlag.AssocBefore */ : 0) | flags); } /** @internal */ static normalized(ranges, mainIndex = 0) { let main = ranges[mainIndex]; ranges.sort((a, b) => a.from - b.from); mainIndex = ranges.indexOf(main); for (let i = 1; i < ranges.length; i++) { let range = ranges[i], prev = ranges[i - 1]; if (range.empty ? range.from <= prev.to : range.from < prev.to) { let from = prev.from, to = Math.max(range.to, prev.to); if (i <= mainIndex) mainIndex--; ranges.splice(--i, 2, range.anchor > range.head ? EditorSelection.range(to, from) : EditorSelection.range(from, to)); } } return new EditorSelection(ranges, mainIndex); } } function checkSelection(selection, docLength) { for (let range of selection.ranges) if (range.to > docLength) throw new RangeError("Selection points outside of document"); } let nextID = 0; /** A facet is a labeled value that is associated with an editor state. It takes inputs from any number of extensions, and combines those into a single output value. Examples of uses of facets are the [tab size](https://codemirror.net/6/docs/ref/#state.EditorState^tabSize), [editor attributes](https://codemirror.net/6/docs/ref/#view.EditorView^editorAttributes), and [update listeners](https://codemirror.net/6/docs/ref/#view.EditorView^updateListener). Note that `Facet` instances can be used anywhere where [`FacetReader`](https://codemirror.net/6/docs/ref/#state.FacetReader) is expected. */ class Facet { constructor( /** @internal */ combine, /** @internal */ compareInput, /** @internal */ compare, isStatic, enables) { this.combine = combine; this.compareInput = compareInput; this.compare = compare; this.isStatic = isStatic; /** @internal */ this.id = nextID++; this.default = combine([]); this.extensions = typeof enables == "function" ? enables(this) : enables; } /** Returns a facet reader for this facet, which can be used to [read](https://codemirror.net/6/docs/ref/#state.EditorState.facet) it but not to define values for it. */ get reader() { return this; } /** Define a new facet. */ static define(config = {}) { return new Facet(config.combine || ((a) => a), config.compareInput || ((a, b) => a === b), config.compare || (!config.combine ? sameArray : (a, b) => a === b), !!config.static, config.enables); } /** Returns an extension that adds the given value to this facet. */ of(value) { return new FacetProvider([], this, 0 /* Provider.Static */, value); } /** Create an extension that computes a value for the facet from a state. You must take care to declare the parts of the state that this value depends on, since your function is only called again for a new state when one of those parts changed. In cases where your value depends only on a single field, you'll want to use the [`from`](https://codemirror.net/6/docs/ref/#state.Facet.from) method instead. */ compute(deps, get) { if (this.isStatic) throw new Error("Can't compute a static facet"); return new FacetProvider(deps, this, 1 /* Provider.Single */, get); } /** Create an extension that computes zero or more values for this facet from a state. */ computeN(deps, get) { if (this.isStatic) throw new Error("Can't compute a static facet"); return new FacetProvider(deps, this, 2 /* Provider.Multi */, get); } from(field, get) { if (!get) get = x => x; return this.compute([field], state => get(state.field(field))); } } function sameArray(a, b) { return a == b || a.length == b.length && a.every((e, i) => e === b[i]); } class FacetProvider { constructor(dependencies, facet, type, value) { this.dependencies = dependencies; this.facet = facet; this.type = type; this.value = value; this.id = nextID++; } dynamicSlot(addresses) { var _a; let getter = this.value; let compare = this.facet.compareInput; let id = this.id, idx = addresses[id] >> 1, multi = this.type == 2 /* Provider.Multi */; let depDoc = false, depSel = false, depAddrs = []; for (let dep of this.dependencies) { if (dep == "doc") depDoc = true; else if (dep == "selection") depSel = true; else if ((((_a = addresses[dep.id]) !== null && _a !== void 0 ? _a : 1) & 1) == 0) depAddrs.push(addresses[dep.id]); } return { create(state) { state.values[idx] = getter(state); return 1 /* SlotStatus.Changed */; }, update(state, tr) { if ((depDoc && tr.docChanged) || (depSel && (tr.docChanged || tr.selection)) || ensureAll(state, depAddrs)) { let newVal = getter(state); if (multi ? !compareArray(newVal, state.values[idx], compare) : !compare(newVal, state.values[idx])) { state.values[idx] = newVal; return 1 /* SlotStatus.Changed */; } } return 0; }, reconfigure: (state, oldState) => { let newVal, oldAddr = oldState.config.address[id]; if (oldAddr != null) { let oldVal = getAddr(oldState, oldAddr); if (this.dependencies.every(dep => { return dep instanceof Facet ? oldState.facet(dep) === state.facet(dep) : dep instanceof StateField ? oldState.field(dep, false) == state.field(dep, false) : true; }) || (multi ? compareArray(newVal = getter(state), oldVal, compare) : compare(newVal = getter(state), oldVal))) { state.values[idx] = oldVal; return 0; } } else { newVal = getter(state); } state.values[idx] = newVal; return 1 /* SlotStatus.Changed */; } }; } } function compareArray(a, b, compare) { if (a.length != b.length) return false; for (let i = 0; i < a.length; i++) if (!compare(a[i], b[i])) return false; return true; } function ensureAll(state, addrs) { let changed = false; for (let addr of addrs) if (ensureAddr(state, addr) & 1 /* SlotStatus.Changed */) changed = true; return changed; } function dynamicFacetSlot(addresses, facet, providers) { let providerAddrs = providers.map(p => addresses[p.id]); let providerTypes = providers.map(p => p.type); let dynamic = providerAddrs.filter(p => !(p & 1)); let idx = addresses[facet.id] >> 1; function get(state) { let values = []; for (let i = 0; i < providerAddrs.length; i++) { let value = getAddr(state, providerAddrs[i]); if (providerTypes[i] == 2 /* Provider.Multi */) for (let val of value) values.push(val); else values.push(value); } return facet.combine(values); } return { create(state) { for (let addr of providerAddrs) ensureAddr(state, addr); state.values[idx] = get(state); return 1 /* SlotStatus.Changed */; }, update(state, tr) { if (!ensureAll(state, dynamic)) return 0; let value = get(state); if (facet.compare(value, state.values[idx])) return 0; state.values[idx] = value; return 1 /* SlotStatus.Changed */; }, reconfigure(state, oldState) { let depChanged = ensureAll(state, providerAddrs); let oldProviders = oldState.config.facets[facet.id], oldValue = oldState.facet(facet); if (oldProviders && !depChanged && sameArray(providers, oldProviders)) { state.values[idx] = oldValue; return 0; } let value = get(state); if (facet.compare(value, oldValue)) { state.values[idx] = oldValue; return 0; } state.values[idx] = value; return 1 /* SlotStatus.Changed */; } }; } const initField = /*@__PURE__*/Facet.define({ static: true }); /** Fields can store additional information in an editor state, and keep it in sync with the rest of the state. */ class StateField { constructor( /** @internal */ id, createF, updateF, compareF, /** @internal */ spec) { this.id = id; this.createF = createF; this.updateF = updateF; this.compareF = compareF; this.spec = spec; /** @internal */ this.provides = undefined; } /** Define a state field. */ static define(config) { let field = new StateField(nextID++, config.create, config.update, config.compare || ((a, b) => a === b), config); if (config.provide) field.provides = config.provide(field); return field; } create(state) { let init = state.facet(initField).find(i => i.field == this); return ((init === null || init === void 0 ? void 0 : init.create) || this.createF)(state); } /** @internal */ slot(addresses) { let idx = addresses[this.id] >> 1; return { create: (state) => { state.values[idx] = this.create(state); return 1 /* SlotStatus.Changed */; }, update: (state, tr) => { let oldVal = state.values[idx]; let value = this.updateF(oldVal, tr); if (this.compareF(oldVal, value)) return 0; state.values[idx] = value; return 1 /* SlotStatus.Changed */; }, reconfigure: (state, oldState) => { if (oldState.config.address[this.id] != null) { state.values[idx] = oldState.field(this); return 0; } state.values[idx] = this.create(state); return 1 /* SlotStatus.Changed */; } }; } /** Returns an extension that enables this field and overrides the way it is initialized. Can be useful when you need to provide a non-default starting value for the field. */ init(create) { return [this, initField.of({ field: this, create })]; } /** State field instances can be used as [`Extension`](https://codemirror.net/6/docs/ref/#state.Extension) values to enable the field in a given state. */ get extension() { return this; } } const Prec_ = { lowest: 4, low: 3, default: 2, high: 1, highest: 0 }; function prec(value) { return (ext) => new PrecExtension(ext, value); } /** By default extensions are registered in the order they are found in the flattened form of nested array that was provided. Individual extension values can be assigned a precedence to override this. Extensions that do not have a precedence set get the precedence of the nearest parent with a precedence, or [`default`](https://codemirror.net/6/docs/ref/#state.Prec.default) if there is no such parent. The final ordering of extensions is determined by first sorting by precedence and then by order within each precedence. */ const Prec = { /** The highest precedence level, for extensions that should end up near the start of the precedence ordering. */ highest: /*@__PURE__*/prec(Prec_.highest), /** A higher-than-default precedence, for extensions that should come before those with default precedence. */ high: /*@__PURE__*/prec(Prec_.high), /** The default precedence, which is also used for extensions without an explicit precedence. */ default: /*@__PURE__*/prec(Prec_.default), /** A lower-than-default precedence. */ low: /*@__PURE__*/prec(Prec_.low), /** The lowest precedence level. Meant for things that should end up near the end of the extension order. */ lowest: /*@__PURE__*/prec(Prec_.lowest) }; class PrecExtension { constructor(inner, prec) { this.inner = inner; this.prec = prec; } } /** Extension compartments can be used to make a configuration dynamic. By [wrapping](https://codemirror.net/6/docs/ref/#state.Compartment.of) part of your configuration in a compartment, you can later [replace](https://codemirror.net/6/docs/ref/#state.Compartment.reconfigure) that part through a transaction. */ class Compartment { /** Create an instance of this compartment to add to your [state configuration](https://codemirror.net/6/docs/ref/#state.EditorStateConfig.extensions). */ of(ext) { return new CompartmentInstance(this, ext); } /** Create an [effect](https://codemirror.net/6/docs/ref/#state.TransactionSpec.effects) that reconfigures this compartment. */ reconfigure(content) { return Compartment.reconfigure.of({ compartment: this, extension: content }); } /** Get the current content of the compartment in the state, or `undefined` if it isn't present. */ get(state) { return state.config.compartments.get(this); } } class CompartmentInstance { constructor(compartment, inner) { this.compartment = compartment; this.inner = inner; } } class Configuration { constructor(base, compartments, dynamicSlots, address, staticValues, facets) { this.base = base; this.compartments = compartments; this.dynamicSlots = dynamicSlots; this.address = address; this.staticValues = staticValues; this.facets = facets; this.statusTemplate = []; while (this.statusTemplate.length < dynamicSlots.length) this.statusTemplate.push(0 /* SlotStatus.Unresolved */); } staticFacet(facet) { let addr = this.address[facet.id]; return addr == null ? facet.default : this.staticValues[addr >> 1]; } static resolve(base, compartments, oldState) { let fields = []; let facets = Object.create(null); let newCompartments = new Map(); for (let ext of flatten(base, compartments, newCompartments)) { if (ext instanceof StateField) fields.push(ext); else (facets[ext.facet.id] || (facets[ext.facet.id] = [])).push(ext); } let address = Object.create(null); let staticValues = []; let dynamicSlots = []; for (let field of fields) { address[field.id] = dynamicSlots.length << 1; dynamicSlots.push(a => field.slot(a)); } let oldFacets = oldState === null || oldState === void 0 ? void 0 : oldState.config.facets; for (let id in facets) { let providers = facets[id], facet = providers[0].facet; let oldProviders = oldFacets && oldFacets[id] || []; if (providers.every(p => p.type == 0 /* Provider.Static */)) { address[facet.id] = (staticValues.length << 1) | 1; if (sameArray(oldProviders, providers)) { staticValues.push(oldState.facet(facet)); } else { let value = facet.combine(providers.map(p => p.value)); staticValues.push(oldState && facet.compare(value, oldState.facet(facet)) ? oldState.facet(facet) : value); } } else { for (let p of providers) { if (p.type == 0 /* Provider.Static */) { address[p.id] = (staticValues.length << 1) | 1; staticValues.push(p.value); } else { address[p.id] = dynamicSlots.length << 1; dynamicSlots.push(a => p.dynamicSlot(a)); } } address[facet.id] = dynamicSlots.length << 1; dynamicSlots.push(a => dynamicFacetSlot(a, facet, providers)); } } let dynamic = dynamicSlots.map(f => f(address)); return new Configuration(base, newCompartments, dynamic, address, staticValues, facets); } } function flatten(extension, compartments, newCompartments) { let result = [[], [], [], [], []]; let seen = new Map(); function inner(ext, prec) { let known = seen.get(ext); if (known != null) { if (known <= prec) return; let found = result[known].indexOf(ext); if (found > -1) result[known].splice(found, 1); if (ext instanceof CompartmentInstance) newCompartments.delete(ext.compartment); } seen.set(ext, prec); if (Array.isArray(ext)) { for (let e of ext) inner(e, prec); } else if (ext instanceof CompartmentInstance) { if (newCompartments.has(ext.compartment)) throw new RangeError(`Duplicate use of compartment in extensions`); let content = compartments.get(ext.compartment) || ext.inner; newCompartments.set(ext.compartment, content); inner(content, prec); } else if (ext instanceof PrecExtension) { inner(ext.inner, ext.prec); } else if (ext instanceof StateField) { result[prec].push(ext); if (ext.provides) inner(ext.provides, prec); } else if (ext instanceof FacetProvider) { result[prec].push(ext); if (ext.facet.extensions) inner(ext.facet.extensions, Prec_.default); } else { let content = ext.extension; if (!content) throw new Error(`Unrecognized extension value in extension set (${ext}). This sometimes happens because multiple instances of @codemirror/state are loaded, breaking instanceof checks.`); inner(content, prec); } } inner(extension, Prec_.default); return result.reduce((a, b) => a.concat(b)); } function ensureAddr(state, addr) { if (addr & 1) return 2 /* SlotStatus.Computed */; let idx = addr >> 1; let status = state.status[idx]; if (status == 4 /* SlotStatus.Computing */) throw new Error("Cyclic dependency between fields and/or facets"); if (status & 2 /* SlotStatus.Computed */) return status; state.status[idx] = 4 /* SlotStatus.Computing */; let changed = state.computeSlot(state, state.config.dynamicSlots[idx]); return state.status[idx] = 2 /* SlotStatus.Computed */ | changed; } function getAddr(state, addr) { return addr & 1 ? state.config.staticValues[addr >> 1] : state.values[addr >> 1]; } const languageData = /*@__PURE__*/Facet.define(); const allowMultipleSelections = /*@__PURE__*/Facet.define({ combine: values => values.some(v => v), static: true }); const lineSeparator = /*@__PURE__*/Facet.define({ combine: values => values.length ? values[0] : undefined, static: true }); const changeFilter = /*@__PURE__*/Facet.define(); const transactionFilter = /*@__PURE__*/Facet.define(); const transactionExtender = /*@__PURE__*/Facet.define(); const readOnly$1 = /*@__PURE__*/Facet.define({ combine: values => values.length ? values[0] : false }); /** Annotations are tagged values that are used to add metadata to transactions in an extensible way. They should be used to model things that effect the entire transaction (such as its [time stamp](https://codemirror.net/6/docs/ref/#state.Transaction^time) or information about its [origin](https://codemirror.net/6/docs/ref/#state.Transaction^userEvent)). For effects that happen _alongside_ the other changes made by the transaction, [state effects](https://codemirror.net/6/docs/ref/#state.StateEffect) are more appropriate. */ class Annotation { /** @internal */ constructor( /** The annotation type. */ type, /** The value of this annotation. */ value) { this.type = type; this.value = value; } /** Define a new type of annotation. */ static define() { return new AnnotationType(); } } /** Marker that identifies a type of [annotation](https://codemirror.net/6/docs/ref/#state.Annotation). */ class AnnotationType { /** Create an instance of this annotation. */ of(value) { return new Annotation(this, value); } } /** Representation of a type of state effect. Defined with [`StateEffect.define`](https://codemirror.net/6/docs/ref/#state.StateEffect^define). */ class StateEffectType { /** @internal */ constructor( // The `any` types in these function types are there to work // around TypeScript issue #37631, where the type guard on // `StateEffect.is` mysteriously stops working when these properly // have type `Value`. /** @internal */ map) { this.map = map; } /** Create a [state effect](https://codemirror.net/6/docs/ref/#state.StateEffect) instance of this type. */ of(value) { return new StateEffect(this, value); } } /** State effects can be used to represent additional effects associated with a [transaction](https://codemirror.net/6/docs/ref/#state.Transaction.effects). They are often useful to model changes to custom [state fields](https://codemirror.net/6/docs/ref/#state.StateField), when those changes aren't implicit in document or selection changes. */ class StateEffect { /** @internal */ constructor( /** @internal */ type, /** The value of this effect. */ value) { this.type = type; this.value = value; } /** Map this effect through a position mapping. Will return `undefined` when that ends up deleting the effect. */ map(mapping) { let mapped = this.type.map(this.value, mapping); return mapped === undefined ? undefined : mapped == this.value ? this : new StateEffect(this.type, mapped); } /** Tells you whether this effect object is of a given [type](https://codemirror.net/6/docs/ref/#state.StateEffectType). */ is(type) { return this.type == type; } /** Define a new effect type. The type parameter indicates the type of values that his effect holds. It should be a type that doesn't include `undefined`, since that is used in [mapping](https://codemirror.net/6/docs/ref/#state.StateEffect.map) to indicate that an effect is removed. */ static define(spec = {}) { return new StateEffectType(spec.map || (v => v)); } /** Map an array of effects through a change set. */ static mapEffects(effects, mapping) { if (!effects.length) return effects; let result = []; for (let effect of effects) { let mapped = effect.map(mapping); if (mapped) result.push(mapped); } return result; } } /** This effect can be used to reconfigure the root extensions of the editor. Doing this will discard any extensions [appended](https://codemirror.net/6/docs/ref/#state.StateEffect^appendConfig), but does not reset the content of [reconfigured](https://codemirror.net/6/docs/ref/#state.Compartment.reconfigure) compartments. */ StateEffect.reconfigure = /*@__PURE__*/StateEffect.define(); /** Append extensions to the top-level configuration of the editor. */ StateEffect.appendConfig = /*@__PURE__*/StateEffect.define(); /** Changes to the editor state are grouped into transactions. Typically, a user action creates a single transaction, which may contain any number of document changes, may change the selection, or have other effects. Create a transaction by calling [`EditorState.update`](https://codemirror.net/6/docs/ref/#state.EditorState.update), or immediately dispatch one by calling [`EditorView.dispatch`](https://codemirror.net/6/docs/ref/#view.EditorView.dispatch). */ class Transaction { constructor( /** The state from which the transaction starts. */ startState, /** The document changes made by this transaction. */ changes, /** The selection set by this transaction, or undefined if it doesn't explicitly set a selection. */ selection, /** The effects added to the transaction. */ effects, /** @internal */ annotations, /** Whether the selection should be scrolled into view after this transaction is dispatched. */ scrollIntoView) { this.startState = startState; this.changes = changes; this.selection = selection; this.effects = effects; this.annotations = annotations; this.scrollIntoView = scrollIntoView; /** @internal */ this._doc = null; /** @internal */ this._state = null; if (selection) checkSelection(selection, changes.newLength); if (!annotations.some((a) => a.type == Transaction.time)) this.annotations = annotations.concat(Transaction.time.of(Date.now())); } /** @internal */ static create(startState, changes, selection, effects, annotations, scrollIntoView) { return new Transaction(startState, changes, selection, effects, annotations, scrollIntoView); } /** The new document produced by the transaction. Contrary to [`.state`](https://codemirror.net/6/docs/ref/#state.Transaction.state)`.doc`, accessing this won't force the entire new state to be computed right away, so it is recommended that [transaction filters](https://codemirror.net/6/docs/ref/#state.EditorState^transactionFilter) use this getter when they need to look at the new document. */ get newDoc() { return this._doc || (this._doc = this.changes.apply(this.startState.doc)); } /** The new selection produced by the transaction. If [`this.selection`](https://codemirror.net/6/docs/ref/#state.Transaction.selection) is undefined, this will [map](https://codemirror.net/6/docs/ref/#state.EditorSelection.map) the start state's current selection through the changes made by the transaction. */ get newSelection() { return this.selection || this.startState.selection.map(this.changes); } /** The new state created by the transaction. Computed on demand (but retained for subsequent access), so it is recommended not to access it in [transaction filters](https://codemirror.net/6/docs/ref/#state.EditorState^transactionFilter) when possible. */ get state() { if (!this._state) this.startState.applyTransaction(this); return this._state; } /** Get the value of the given annotation type, if any. */ annotation(type) { for (let ann of this.annotations) if (ann.type == type) return ann.value; return undefined; } /** Indicates whether the transaction changed the document. */ get docChanged() { return !this.changes.empty; } /** Indicates whether this transaction reconfigures the state (through a [configuration compartment](https://codemirror.net/6/docs/ref/#state.Compartment) or with a top-level configuration [effect](https://codemirror.net/6/docs/ref/#state.StateEffect^reconfigure). */ get reconfigured() { return this.startState.config != this.state.config; } /** Returns true if the transaction has a [user event](https://codemirror.net/6/docs/ref/#state.Transaction^userEvent) annotation that is equal to or more specific than `event`. For example, if the transaction has `"select.pointer"` as user event, `"select"` and `"select.pointer"` will match it. */ isUserEvent(event) { let e = this.annotation(Transaction.userEvent); return !!(e && (e == event || e.length > event.length && e.slice(0, event.length) == event && e[event.length] == ".")); } } /** Annotation used to store transaction timestamps. Automatically added to every transaction, holding `Date.now()`. */ Transaction.time = /*@__PURE__*/Annotation.define(); /** Annotation used to associate a transaction with a user interface event. Holds a string identifying the event, using a dot-separated format to support attaching more specific information. The events used by the core libraries are: - `"input"` when content is entered - `"input.type"` for typed input - `"input.type.compose"` for composition - `"input.paste"` for pasted input - `"input.drop"` when adding content with drag-and-drop - `"input.complete"` when autocompleting - `"delete"` when the user deletes content - `"delete.selection"` when deleting the selection - `"delete.forward"` when deleting forward from the selection - `"delete.backward"` when deleting backward from the selection - `"delete.cut"` when cutting to the clipboard - `"move"` when content is moved - `"move.drop"` when content is moved within the editor through drag-and-drop - `"select"` when explicitly changing the selection - `"select.pointer"` when selecting with a mouse or other pointing device - `"undo"` and `"redo"` for history actions Use [`isUserEvent`](https://codemirror.net/6/docs/ref/#state.Transaction.isUserEvent) to check whether the annotation matches a given event. */ Transaction.userEvent = /*@__PURE__*/Annotation.define(); /** Annotation indicating whether a transaction should be added to the undo history or not. */ Transaction.addToHistory = /*@__PURE__*/Annotation.define(); /** Annotation indicating (when present and true) that a transaction represents a change made by some other actor, not the user. This is used, for example, to tag other people's changes in collaborative editing. */ Transaction.remote = /*@__PURE__*/Annotation.define(); function joinRanges(a, b) { let result = []; for (let iA = 0, iB = 0; ;) { let from, to; if (iA < a.length && (iB == b.length || b[iB] >= a[iA])) { from = a[iA++]; to = a[iA++]; } else if (iB < b.length) { from = b[iB++]; to = b[iB++]; } else return result; if (!result.length || result[result.length - 1] < from) result.push(from, to); else if (result[result.length - 1] < to) result[result.length - 1] = to; } } function mergeTransaction(a, b, sequential) { var _a; let mapForA, mapForB, changes; if (sequential) { mapForA = b.changes; mapForB = ChangeSet.empty(b.changes.length); changes = a.changes.compose(b.changes); } else { mapForA = b.changes.map(a.changes); mapForB = a.changes.mapDesc(b.changes, true); changes = a.changes.compose(mapForA); } return { changes, selection: b.selection ? b.selection.map(mapForB) : (_a = a.selection) === null || _a === void 0 ? void 0 : _a.map(mapForA), effects: StateEffect.mapEffects(a.effects, mapForA).concat(StateEffect.mapEffects(b.effects, mapForB)), annotations: a.annotations.length ? a.annotations.concat(b.annotations) : b.annotations, scrollIntoView: a.scrollIntoView || b.scrollIntoView }; } function resolveTransactionInner(state, spec, docSize) { let sel = spec.selection, annotations = asArray$1(spec.annotations); if (spec.userEvent) annotations = annotations.concat(Transaction.userEvent.of(spec.userEvent)); return { changes: spec.changes instanceof ChangeSet ? spec.changes : ChangeSet.of(spec.changes || [], docSize, state.facet(lineSeparator)), selection: sel && (sel instanceof EditorSelection ? sel : EditorSelection.single(sel.anchor, sel.head)), effects: asArray$1(spec.effects), annotations, scrollIntoView: !!spec.scrollIntoView }; } function resolveTransaction(state, specs, filter) { let s = resolveTransactionInner(state, specs.length ? specs[0] : {}, state.doc.length); if (specs.length && specs[0].filter === false) filter = false; for (let i = 1; i < specs.length; i++) { if (specs[i].filter === false) filter = false; let seq = !!specs[i].sequential; s = mergeTransaction(s, resolveTransactionInner(state, specs[i], seq ? s.changes.newLength : state.doc.length), seq); } let tr = Transaction.create(state, s.changes, s.selection, s.effects, s.annotations, s.scrollIntoView); return extendTransaction(filter ? filterTransaction(tr) : tr); } // Finish a transaction by applying filters if necessary. function filterTransaction(tr) { let state = tr.startState; // Change filters let result = true; for (let filter of state.facet(changeFilter)) { let value = filter(tr); if (value === false) { result = false; break; } if (Array.isArray(value)) result = result === true ? value : joinRanges(result, value); } if (result !== true) { let changes, back; if (result === false) { back = tr.changes.invertedDesc; changes = ChangeSet.empty(state.doc.length); } else { let filtered = tr.changes.filter(result); changes = filtered.changes; back = filtered.filtered.mapDesc(filtered.changes).invertedDesc; } tr = Transaction.create(state, changes, tr.selection && tr.selection.map(back), StateEffect.mapEffects(tr.effects, back), tr.annotations, tr.scrollIntoView); } // Transaction filters let filters = state.facet(transactionFilter); for (let i = filters.length - 1; i >= 0; i--) { let filtered = filters[i](tr); if (filtered instanceof Transaction) tr = filtered; else if (Array.isArray(filtered) && filtered.length == 1 && filtered[0] instanceof Transaction) tr = filtered[0]; else tr = resolveTransaction(state, asArray$1(filtered), false); } return tr; } function extendTransaction(tr) { let state = tr.startState, extenders = state.facet(transactionExtender), spec = tr; for (let i = extenders.length - 1; i >= 0; i--) { let extension = extenders[i](tr); if (extension && Object.keys(extension).length) spec = mergeTransaction(spec, resolveTransactionInner(state, extension, tr.changes.newLength), true); } return spec == tr ? tr : Transaction.create(state, tr.changes, tr.selection, spec.effects, spec.annotations, spec.scrollIntoView); } const none$2 = []; function asArray$1(value) { return value == null ? none$2 : Array.isArray(value) ? value : [value]; } /** The categories produced by a [character categorizer](https://codemirror.net/6/docs/ref/#state.EditorState.charCategorizer). These are used do things like selecting by word. */ var CharCategory = /*@__PURE__*/(function (CharCategory) { /** Word characters. */ CharCategory[CharCategory["Word"] = 0] = "Word"; /** Whitespace. */ CharCategory[CharCategory["Space"] = 1] = "Space"; /** Anything else. */ CharCategory[CharCategory["Other"] = 2] = "Other"; return CharCategory })(CharCategory || (CharCategory = {})); const nonASCIISingleCaseWordChar = /[\u00df\u0587\u0590-\u05f4\u0600-\u06ff\u3040-\u309f\u30a0-\u30ff\u3400-\u4db5\u4e00-\u9fcc\uac00-\ud7af]/; let wordChar; try { wordChar = /*@__PURE__*/new RegExp("[\\p{Alphabetic}\\p{Number}_]", "u"); } catch (_) { } function hasWordChar(str) { if (wordChar) return wordChar.test(str); for (let i = 0; i < str.length; i++) { let ch = str[i]; if (/\w/.test(ch) || ch > "\x80" && (ch.toUpperCase() != ch.toLowerCase() || nonASCIISingleCaseWordChar.test(ch))) return true; } return false; } function makeCategorizer(wordChars) { return (char) => { if (!/\S/.test(char)) return CharCategory.Space; if (hasWordChar(char)) return CharCategory.Word; for (let i = 0; i < wordChars.length; i++) if (char.indexOf(wordChars[i]) > -1) return CharCategory.Word; return CharCategory.Other; }; } /** The editor state class is a persistent (immutable) data structure. To update a state, you [create](https://codemirror.net/6/docs/ref/#state.EditorState.update) a [transaction](https://codemirror.net/6/docs/ref/#state.Transaction), which produces a _new_ state instance, without modifying the original object. As such, _never_ mutate properties of a state directly. That'll just break things. */ class EditorState { constructor( /** @internal */ config, /** The current document. */ doc, /** The current selection. */ selection, /** @internal */ values, computeSlot, tr) { this.config = config; this.doc = doc; this.selection = selection; this.values = values; this.status = config.statusTemplate.slice(); this.computeSlot = computeSlot; // Fill in the computed state immediately, so that further queries // for it made during the update return this state if (tr) tr._state = this; for (let i = 0; i < this.config.dynamicSlots.length; i++) ensureAddr(this, i << 1); this.computeSlot = null; } field(field, require = true) { let addr = this.config.address[field.id]; if (addr == null) { if (require) throw new RangeError("Field is not present in this state"); return undefined; } ensureAddr(this, addr); return getAddr(this, addr); } /** Create a [transaction](https://codemirror.net/6/docs/ref/#state.Transaction) that updates this state. Any number of [transaction specs](https://codemirror.net/6/docs/ref/#state.TransactionSpec) can be passed. Unless [`sequential`](https://codemirror.net/6/docs/ref/#state.TransactionSpec.sequential) is set, the [changes](https://codemirror.net/6/docs/ref/#state.TransactionSpec.changes) (if any) of each spec are assumed to start in the _current_ document (not the document produced by previous specs), and its [selection](https://codemirror.net/6/docs/ref/#state.TransactionSpec.selection) and [effects](https://codemirror.net/6/docs/ref/#state.TransactionSpec.effects) are assumed to refer to the document created by its _own_ changes. The resulting transaction contains the combined effect of all the different specs. For [selection](https://codemirror.net/6/docs/ref/#state.TransactionSpec.selection), later specs take precedence over earlier ones. */ update(...specs) { return resolveTransaction(this, specs, true); } /** @internal */ applyTransaction(tr) { let conf = this.config, { base, compartments } = conf; for (let effect of tr.effects) { if (effect.is(Compartment.reconfigure)) { if (conf) { compartments = new Map; conf.compartments.forEach((val, key) => compartments.set(key, val)); conf = null; } compartments.set(effect.value.compartment, effect.value.extension); } else if (effect.is(StateEffect.reconfigure)) { conf = null; base = effect.value; } else if (effect.is(StateEffect.appendConfig)) { conf = null; base = asArray$1(base).concat(effect.value); } } let startValues; if (!conf) { conf = Configuration.resolve(base, compartments, this); let intermediateState = new EditorState(conf, this.doc, this.selection, conf.dynamicSlots.map(() => null), (state, slot) => slot.reconfigure(state, this), null); startValues = intermediateState.values; } else { startValues = tr.startState.values.slice(); } let selection = tr.startState.facet(allowMultipleSelections) ? tr.newSelection : tr.newSelection.asSingle(); new EditorState(conf, tr.newDoc, selection, startValues, (state, slot) => slot.update(state, tr), tr); } /** Create a [transaction spec](https://codemirror.net/6/docs/ref/#state.TransactionSpec) that replaces every selection range with the given content. */ replaceSelection(text) { if (typeof text == "string") text = this.toText(text); return this.changeByRange(range => ({ changes: { from: range.from, to: range.to, insert: text }, range: EditorSelection.cursor(range.from + text.length) })); } /** Create a set of changes and a new selection by running the given function for each range in the active selection. The function can return an optional set of changes (in the coordinate space of the start document), plus an updated range (in the coordinate space of the document produced by the call's own changes). This method will merge all the changes and ranges into a single changeset and selection, and return it as a [transaction spec](https://codemirror.net/6/docs/ref/#state.TransactionSpec), which can be passed to [`update`](https://codemirror.net/6/docs/ref/#state.EditorState.update). */ changeByRange(f) { let sel = this.selection; let result1 = f(sel.ranges[0]); let changes = this.changes(result1.changes), ranges = [result1.range]; let effects = asArray$1(result1.effects); for (let i = 1; i < sel.ranges.length; i++) { let result = f(sel.ranges[i]); let newChanges = this.changes(result.changes), newMapped = newChanges.map(changes); for (let j = 0; j < i; j++) ranges[j] = ranges[j].map(newMapped); let mapBy = changes.mapDesc(newChanges, true); ranges.push(result.range.map(mapBy)); changes = changes.compose(newMapped); effects = StateEffect.mapEffects(effects, newMapped).concat(StateEffect.mapEffects(asArray$1(result.effects), mapBy)); } return { changes, selection: EditorSelection.create(ranges, sel.mainIndex), effects }; } /** Create a [change set](https://codemirror.net/6/docs/ref/#state.ChangeSet) from the given change description, taking the state's document length and line separator into account. */ changes(spec = []) { if (spec instanceof ChangeSet) return spec; return ChangeSet.of(spec, this.doc.length, this.facet(EditorState.lineSeparator)); } /** Using the state's [line separator](https://codemirror.net/6/docs/ref/#state.EditorState^lineSeparator), create a [`Text`](https://codemirror.net/6/docs/ref/#state.Text) instance from the given string. */ toText(string) { return Text.of(string.split(this.facet(EditorState.lineSeparator) || DefaultSplit)); } /** Return the given range of the document as a string. */ sliceDoc(from = 0, to = this.doc.length) { return this.doc.sliceString(from, to, this.lineBreak); } /** Get the value of a state [facet](https://codemirror.net/6/docs/ref/#state.Facet). */ facet(facet) { let addr = this.config.address[facet.id]; if (addr == null) return facet.default; ensureAddr(this, addr); return getAddr(this, addr); } /** Convert this state to a JSON-serializable object. When custom fields should be serialized, you can pass them in as an object mapping property names (in the resulting object, which should not use `doc` or `selection`) to fields. */ toJSON(fields) { let result = { doc: this.sliceDoc(), selection: this.selection.toJSON() }; if (fields) for (let prop in fields) { let value = fields[prop]; if (value instanceof StateField && this.config.address[value.id] != null) result[prop] = value.spec.toJSON(this.field(fields[prop]), this); } return result; } /** Deserialize a state from its JSON representation. When custom fields should be deserialized, pass the same object you passed to [`toJSON`](https://codemirror.net/6/docs/ref/#state.EditorState.toJSON) when serializing as third argument. */ static fromJSON(json, config = {}, fields) { if (!json || typeof json.doc != "string") throw new RangeError("Invalid JSON representation for EditorState"); let fieldInit = []; if (fields) for (let prop in fields) { if (Object.prototype.hasOwnProperty.call(json, prop)) { let field = fields[prop], value = json[prop]; fieldInit.push(field.init(state => field.spec.fromJSON(value, state))); } } return EditorState.create({ doc: json.doc, selection: EditorSelection.fromJSON(json.selection), extensions: config.extensions ? fieldInit.concat([config.extensions]) : fieldInit }); } /** Create a new state. You'll usually only need this when initializing an editor—updated states are created by applying transactions. */ static create(config = {}) { let configuration = Configuration.resolve(config.extensions || [], new Map); let doc = config.doc instanceof Text ? config.doc : Text.of((config.doc || "").split(configuration.staticFacet(EditorState.lineSeparator) || DefaultSplit)); let selection = !config.selection ? EditorSelection.single(0) : config.selection instanceof EditorSelection ? config.selection : EditorSelection.single(config.selection.anchor, config.selection.head); checkSelection(selection, doc.length); if (!configuration.staticFacet(allowMultipleSelections)) selection = selection.asSingle(); return new EditorState(configuration, doc, selection, configuration.dynamicSlots.map(() => null), (state, slot) => slot.create(state), null); } /** The size (in columns) of a tab in the document, determined by the [`tabSize`](https://codemirror.net/6/docs/ref/#state.EditorState^tabSize) facet. */ get tabSize() { return this.facet(EditorState.tabSize); } /** Get the proper [line-break](https://codemirror.net/6/docs/ref/#state.EditorState^lineSeparator) string for this state. */ get lineBreak() { return this.facet(EditorState.lineSeparator) || "\n"; } /** Returns true when the editor is [configured](https://codemirror.net/6/docs/ref/#state.EditorState^readOnly) to be read-only. */ get readOnly() { return this.facet(readOnly$1); } /** Look up a translation for the given phrase (via the [`phrases`](https://codemirror.net/6/docs/ref/#state.EditorState^phrases) facet), or return the original string if no translation is found. If additional arguments are passed, they will be inserted in place of markers like `$1` (for the first value) and `$2`, etc. A single `$` is equivalent to `$1`, and `$$` will produce a literal dollar sign. */ phrase(phrase, ...insert) { for (let map of this.facet(EditorState.phrases)) if (Object.prototype.hasOwnProperty.call(map, phrase)) { phrase = map[phrase]; break; } if (insert.length) phrase = phrase.replace(/\$(\$|\d*)/g, (m, i) => { if (i == "$") return "$"; let n = +(i || 1); return !n || n > insert.length ? m : insert[n - 1]; }); return phrase; } /** Find the values for a given language data field, provided by the the [`languageData`](https://codemirror.net/6/docs/ref/#state.EditorState^languageData) facet. Examples of language data fields are... - [`"commentTokens"`](https://codemirror.net/6/docs/ref/#commands.CommentTokens) for specifying comment syntax. - [`"autocomplete"`](https://codemirror.net/6/docs/ref/#autocomplete.autocompletion^config.override) for providing language-specific completion sources. - [`"wordChars"`](https://codemirror.net/6/docs/ref/#state.EditorState.charCategorizer) for adding characters that should be considered part of words in this language. - [`"closeBrackets"`](https://codemirror.net/6/docs/ref/#autocomplete.CloseBracketConfig) controls bracket closing behavior. */ languageDataAt(name, pos, side = -1) { let values = []; for (let provider of this.facet(languageData)) { for (let result of provider(this, pos, side)) { if (Object.prototype.hasOwnProperty.call(result, name)) values.push(result[name]); } } return values; } /** Return a function that can categorize strings (expected to represent a single [grapheme cluster](https://codemirror.net/6/docs/ref/#state.findClusterBreak)) into one of: - Word (contains an alphanumeric character or a character explicitly listed in the local language's `"wordChars"` language data, which should be a string) - Space (contains only whitespace) - Other (anything else) */ charCategorizer(at) { return makeCategorizer(this.languageDataAt("wordChars", at).join("")); } /** Find the word at the given position, meaning the range containing all [word](https://codemirror.net/6/docs/ref/#state.CharCategory.Word) characters around it. If no word characters are adjacent to the position, this returns null. */ wordAt(pos) { let { text, from, length } = this.doc.lineAt(pos); let cat = this.charCategorizer(pos); let start = pos - from, end = pos - from; while (start > 0) { let prev = findClusterBreak(text, start, false); if (cat(text.slice(prev, start)) != CharCategory.Word) break; start = prev; } while (end < length) { let next = findClusterBreak(text, end); if (cat(text.slice(end, next)) != CharCategory.Word) break; end = next; } return start == end ? null : EditorSelection.range(start + from, end + from); } } /** A facet that, when enabled, causes the editor to allow multiple ranges to be selected. Be careful though, because by default the editor relies on the native DOM selection, which cannot handle multiple selections. An extension like [`drawSelection`](https://codemirror.net/6/docs/ref/#view.drawSelection) can be used to make secondary selections visible to the user. */ EditorState.allowMultipleSelections = allowMultipleSelections; /** Configures the tab size to use in this state. The first (highest-precedence) value of the facet is used. If no value is given, this defaults to 4. */ EditorState.tabSize = /*@__PURE__*/Facet.define({ combine: values => values.length ? values[0] : 4 }); /** The line separator to use. By default, any of `"\n"`, `"\r\n"` and `"\r"` is treated as a separator when splitting lines, and lines are joined with `"\n"`. When you configure a value here, only that precise separator will be used, allowing you to round-trip documents through the editor without normalizing line separators. */ EditorState.lineSeparator = lineSeparator; /** This facet controls the value of the [`readOnly`](https://codemirror.net/6/docs/ref/#state.EditorState.readOnly) getter, which is consulted by commands and extensions that implement editing functionality to determine whether they should apply. It defaults to false, but when its highest-precedence value is `true`, such functionality disables itself. Not to be confused with [`EditorView.editable`](https://codemirror.net/6/docs/ref/#view.EditorView^editable), which controls whether the editor's DOM is set to be editable (and thus focusable). */ EditorState.readOnly = readOnly$1; /** Registers translation phrases. The [`phrase`](https://codemirror.net/6/docs/ref/#state.EditorState.phrase) method will look through all objects registered with this facet to find translations for its argument. */ EditorState.phrases = /*@__PURE__*/Facet.define({ compare(a, b) { let kA = Object.keys(a), kB = Object.keys(b); return kA.length == kB.length && kA.every(k => a[k] == b[k]); } }); /** A facet used to register [language data](https://codemirror.net/6/docs/ref/#state.EditorState.languageDataAt) providers. */ EditorState.languageData = languageData; /** Facet used to register change filters, which are called for each transaction (unless explicitly [disabled](https://codemirror.net/6/docs/ref/#state.TransactionSpec.filter)), and can suppress part of the transaction's changes. Such a function can return `true` to indicate that it doesn't want to do anything, `false` to completely stop the changes in the transaction, or a set of ranges in which changes should be suppressed. Such ranges are represented as an array of numbers, with each pair of two numbers indicating the start and end of a range. So for example `[10, 20, 100, 110]` suppresses changes between 10 and 20, and between 100 and 110. */ EditorState.changeFilter = changeFilter; /** Facet used to register a hook that gets a chance to update or replace transaction specs before they are applied. This will only be applied for transactions that don't have [`filter`](https://codemirror.net/6/docs/ref/#state.TransactionSpec.filter) set to `false`. You can either return a single transaction spec (possibly the input transaction), or an array of specs (which will be combined in the same way as the arguments to [`EditorState.update`](https://codemirror.net/6/docs/ref/#state.EditorState.update)). When possible, it is recommended to avoid accessing [`Transaction.state`](https://codemirror.net/6/docs/ref/#state.Transaction.state) in a filter, since it will force creation of a state that will then be discarded again, if the transaction is actually filtered. (This functionality should be used with care. Indiscriminately modifying transaction is likely to break something or degrade the user experience.) */ EditorState.transactionFilter = transactionFilter; /** This is a more limited form of [`transactionFilter`](https://codemirror.net/6/docs/ref/#state.EditorState^transactionFilter), which can only add [annotations](https://codemirror.net/6/docs/ref/#state.TransactionSpec.annotations) and [effects](https://codemirror.net/6/docs/ref/#state.TransactionSpec.effects). _But_, this type of filter runs even if the transaction has disabled regular [filtering](https://codemirror.net/6/docs/ref/#state.TransactionSpec.filter), making it suitable for effects that don't need to touch the changes or selection, but do want to process every transaction. Extenders run _after_ filters, when both are present. */ EditorState.transactionExtender = transactionExtender; Compartment.reconfigure = /*@__PURE__*/StateEffect.define(); /** Utility function for combining behaviors to fill in a config object from an array of provided configs. `defaults` should hold default values for all optional fields in `Config`. The function will, by default, error when a field gets two values that aren't `===`-equal, but you can provide combine functions per field to do something else. */ function combineConfig(configs, defaults, // Should hold only the optional properties of Config, but I haven't managed to express that combine = {}) { let result = {}; for (let config of configs) for (let key of Object.keys(config)) { let value = config[key], current = result[key]; if (current === undefined) result[key] = value; else if (current === value || value === undefined); // No conflict else if (Object.hasOwnProperty.call(combine, key)) result[key] = combine[key](current, value); else throw new Error("Config merge conflict for field " + key); } for (let key in defaults) if (result[key] === undefined) result[key] = defaults[key]; return result; } /** Each range is associated with a value, which must inherit from this class. */ class RangeValue { /** Compare this value with another value. Used when comparing rangesets. The default implementation compares by identity. Unless you are only creating a fixed number of unique instances of your value type, it is a good idea to implement this properly. */ eq(other) { return this == other; } /** Create a [range](https://codemirror.net/6/docs/ref/#state.Range) with this value. */ range(from, to = from) { return Range.create(from, to, this); } } RangeValue.prototype.startSide = RangeValue.prototype.endSide = 0; RangeValue.prototype.point = false; RangeValue.prototype.mapMode = MapMode.TrackDel; /** A range associates a value with a range of positions. */ class Range { constructor( /** The range's start position. */ from, /** Its end position. */ to, /** The value associated with this range. */ value) { this.from = from; this.to = to; this.value = value; } /** @internal */ static create(from, to, value) { return new Range(from, to, value); } } function cmpRange(a, b) { return a.from - b.from || a.value.startSide - b.value.startSide; } class Chunk { constructor(from, to, value, // Chunks are marked with the largest point that occurs // in them (or -1 for no points), so that scans that are // only interested in points (such as the // heightmap-related logic) can skip range-only chunks. maxPoint) { this.from = from; this.to = to; this.value = value; this.maxPoint = maxPoint; } get length() { return this.to[this.to.length - 1]; } // Find the index of the given position and side. Use the ranges' // `from` pos when `end == false`, `to` when `end == true`. findIndex(pos, side, end, startAt = 0) { let arr = end ? this.to : this.from; for (let lo = startAt, hi = arr.length; ;) { if (lo == hi) return lo; let mid = (lo + hi) >> 1; let diff = arr[mid] - pos || (end ? this.value[mid].endSide : this.value[mid].startSide) - side; if (mid == lo) return diff >= 0 ? lo : hi; if (diff >= 0) hi = mid; else lo = mid + 1; } } between(offset, from, to, f) { for (let i = this.findIndex(from, -1000000000 /* C.Far */, true), e = this.findIndex(to, 1000000000 /* C.Far */, false, i); i < e; i++) if (f(this.from[i] + offset, this.to[i] + offset, this.value[i]) === false) return false; } map(offset, changes) { let value = [], from = [], to = [], newPos = -1, maxPoint = -1; for (let i = 0; i < this.value.length; i++) { let val = this.value[i], curFrom = this.from[i] + offset, curTo = this.to[i] + offset, newFrom, newTo; if (curFrom == curTo) { let mapped = changes.mapPos(curFrom, val.startSide, val.mapMode); if (mapped == null) continue; newFrom = newTo = mapped; if (val.startSide != val.endSide) { newTo = changes.mapPos(curFrom, val.endSide); if (newTo < newFrom) continue; } } else { newFrom = changes.mapPos(curFrom, val.startSide); newTo = changes.mapPos(curTo, val.endSide); if (newFrom > newTo || newFrom == newTo && val.startSide > 0 && val.endSide <= 0) continue; } if ((newTo - newFrom || val.endSide - val.startSide) < 0) continue; if (newPos < 0) newPos = newFrom; if (val.point) maxPoint = Math.max(maxPoint, newTo - newFrom); value.push(val); from.push(newFrom - newPos); to.push(newTo - newPos); } return { mapped: value.length ? new Chunk(from, to, value, maxPoint) : null, pos: newPos }; } } /** A range set stores a collection of [ranges](https://codemirror.net/6/docs/ref/#state.Range) in a way that makes them efficient to [map](https://codemirror.net/6/docs/ref/#state.RangeSet.map) and [update](https://codemirror.net/6/docs/ref/#state.RangeSet.update). This is an immutable data structure. */ class RangeSet { constructor( /** @internal */ chunkPos, /** @internal */ chunk, /** @internal */ nextLayer, /** @internal */ maxPoint) { this.chunkPos = chunkPos; this.chunk = chunk; this.nextLayer = nextLayer; this.maxPoint = maxPoint; } /** @internal */ static create(chunkPos, chunk, nextLayer, maxPoint) { return new RangeSet(chunkPos, chunk, nextLayer, maxPoint); } /** @internal */ get length() { let last = this.chunk.length - 1; return last < 0 ? 0 : Math.max(this.chunkEnd(last), this.nextLayer.length); } /** The number of ranges in the set. */ get size() { if (this.isEmpty) return 0; let size = this.nextLayer.size; for (let chunk of this.chunk) size += chunk.value.length; return size; } /** @internal */ chunkEnd(index) { return this.chunkPos[index] + this.chunk[index].length; } /** Update the range set, optionally adding new ranges or filtering out existing ones. (Note: The type parameter is just there as a kludge to work around TypeScript variance issues that prevented `RangeSet` from being a subtype of `RangeSet` when `X` is a subtype of `Y`.) */ update(updateSpec) { let { add = [], sort = false, filterFrom = 0, filterTo = this.length } = updateSpec; let filter = updateSpec.filter; if (add.length == 0 && !filter) return this; if (sort) add = add.slice().sort(cmpRange); if (this.isEmpty) return add.length ? RangeSet.of(add) : this; let cur = new LayerCursor(this, null, -1).goto(0), i = 0, spill = []; let builder = new RangeSetBuilder(); while (cur.value || i < add.length) { if (i < add.length && (cur.from - add[i].from || cur.startSide - add[i].value.startSide) >= 0) { let range = add[i++]; if (!builder.addInner(range.from, range.to, range.value)) spill.push(range); } else if (cur.rangeIndex == 1 && cur.chunkIndex < this.chunk.length && (i == add.length || this.chunkEnd(cur.chunkIndex) < add[i].from) && (!filter || filterFrom > this.chunkEnd(cur.chunkIndex) || filterTo < this.chunkPos[cur.chunkIndex]) && builder.addChunk(this.chunkPos[cur.chunkIndex], this.chunk[cur.chunkIndex])) { cur.nextChunk(); } else { if (!filter || filterFrom > cur.to || filterTo < cur.from || filter(cur.from, cur.to, cur.value)) { if (!builder.addInner(cur.from, cur.to, cur.value)) spill.push(Range.create(cur.from, cur.to, cur.value)); } cur.next(); } } return builder.finishInner(this.nextLayer.isEmpty && !spill.length ? RangeSet.empty : this.nextLayer.update({ add: spill, filter, filterFrom, filterTo })); } /** Map this range set through a set of changes, return the new set. */ map(changes) { if (changes.empty || this.isEmpty) return this; let chunks = [], chunkPos = [], maxPoint = -1; for (let i = 0; i < this.chunk.length; i++) { let start = this.chunkPos[i], chunk = this.chunk[i]; let touch = changes.touchesRange(start, start + chunk.length); if (touch === false) { maxPoint = Math.max(maxPoint, chunk.maxPoint); chunks.push(chunk); chunkPos.push(changes.mapPos(start)); } else if (touch === true) { let { mapped, pos } = chunk.map(start, changes); if (mapped) { maxPoint = Math.max(maxPoint, mapped.maxPoint); chunks.push(mapped); chunkPos.push(pos); } } } let next = this.nextLayer.map(changes); return chunks.length == 0 ? next : new RangeSet(chunkPos, chunks, next || RangeSet.empty, maxPoint); } /** Iterate over the ranges that touch the region `from` to `to`, calling `f` for each. There is no guarantee that the ranges will be reported in any specific order. When the callback returns `false`, iteration stops. */ between(from, to, f) { if (this.isEmpty) return; for (let i = 0; i < this.chunk.length; i++) { let start = this.chunkPos[i], chunk = this.chunk[i]; if (to >= start && from <= start + chunk.length && chunk.between(start, from - start, to - start, f) === false) return; } this.nextLayer.between(from, to, f); } /** Iterate over the ranges in this set, in order, including all ranges that end at or after `from`. */ iter(from = 0) { return HeapCursor.from([this]).goto(from); } /** @internal */ get isEmpty() { return this.nextLayer == this; } /** Iterate over the ranges in a collection of sets, in order, starting from `from`. */ static iter(sets, from = 0) { return HeapCursor.from(sets).goto(from); } /** Iterate over two groups of sets, calling methods on `comparator` to notify it of possible differences. */ static compare(oldSets, newSets, /** This indicates how the underlying data changed between these ranges, and is needed to synchronize the iteration. */ textDiff, comparator, /** Can be used to ignore all non-point ranges, and points below the given size. When -1, all ranges are compared. */ minPointSize = -1) { let a = oldSets.filter(set => set.maxPoint > 0 || !set.isEmpty && set.maxPoint >= minPointSize); let b = newSets.filter(set => set.maxPoint > 0 || !set.isEmpty && set.maxPoint >= minPointSize); let sharedChunks = findSharedChunks(a, b, textDiff); let sideA = new SpanCursor(a, sharedChunks, minPointSize); let sideB = new SpanCursor(b, sharedChunks, minPointSize); textDiff.iterGaps((fromA, fromB, length) => compare(sideA, fromA, sideB, fromB, length, comparator)); if (textDiff.empty && textDiff.length == 0) compare(sideA, 0, sideB, 0, 0, comparator); } /** Compare the contents of two groups of range sets, returning true if they are equivalent in the given range. */ static eq(oldSets, newSets, from = 0, to) { if (to == null) to = 1000000000 /* C.Far */ - 1; let a = oldSets.filter(set => !set.isEmpty && newSets.indexOf(set) < 0); let b = newSets.filter(set => !set.isEmpty && oldSets.indexOf(set) < 0); if (a.length != b.length) return false; if (!a.length) return true; let sharedChunks = findSharedChunks(a, b); let sideA = new SpanCursor(a, sharedChunks, 0).goto(from), sideB = new SpanCursor(b, sharedChunks, 0).goto(from); for (; ;) { if (sideA.to != sideB.to || !sameValues(sideA.active, sideB.active) || sideA.point && (!sideB.point || !sideA.point.eq(sideB.point))) return false; if (sideA.to > to) return true; sideA.next(); sideB.next(); } } /** Iterate over a group of range sets at the same time, notifying the iterator about the ranges covering every given piece of content. Returns the open count (see [`SpanIterator.span`](https://codemirror.net/6/docs/ref/#state.SpanIterator.span)) at the end of the iteration. */ static spans(sets, from, to, iterator, /** When given and greater than -1, only points of at least this size are taken into account. */ minPointSize = -1) { let cursor = new SpanCursor(sets, null, minPointSize).goto(from), pos = from; let openRanges = cursor.openStart; for (; ;) { let curTo = Math.min(cursor.to, to); if (cursor.point) { let active = cursor.activeForPoint(cursor.to); let openCount = cursor.pointFrom < from ? active.length + 1 : cursor.point.startSide < 0 ? active.length : Math.min(active.length, openRanges); iterator.point(pos, curTo, cursor.point, active, openCount, cursor.pointRank); openRanges = Math.min(cursor.openEnd(curTo), active.length); } else if (curTo > pos) { iterator.span(pos, curTo, cursor.active, openRanges); openRanges = cursor.openEnd(curTo); } if (cursor.to > to) return openRanges + (cursor.point && cursor.to > to ? 1 : 0); pos = cursor.to; cursor.next(); } } /** Create a range set for the given range or array of ranges. By default, this expects the ranges to be _sorted_ (by start position and, if two start at the same position, `value.startSide`). You can pass `true` as second argument to cause the method to sort them. */ static of(ranges, sort = false) { let build = new RangeSetBuilder(); for (let range of ranges instanceof Range ? [ranges] : sort ? lazySort(ranges) : ranges) build.add(range.from, range.to, range.value); return build.finish(); } /** Join an array of range sets into a single set. */ static join(sets) { if (!sets.length) return RangeSet.empty; let result = sets[sets.length - 1]; for (let i = sets.length - 2; i >= 0; i--) { for (let layer = sets[i]; layer != RangeSet.empty; layer = layer.nextLayer) result = new RangeSet(layer.chunkPos, layer.chunk, result, Math.max(layer.maxPoint, result.maxPoint)); } return result; } } /** The empty set of ranges. */ RangeSet.empty = /*@__PURE__*/new RangeSet([], [], null, -1); function lazySort(ranges) { if (ranges.length > 1) for (let prev = ranges[0], i = 1; i < ranges.length; i++) { let cur = ranges[i]; if (cmpRange(prev, cur) > 0) return ranges.slice().sort(cmpRange); prev = cur; } return ranges; } RangeSet.empty.nextLayer = RangeSet.empty; /** A range set builder is a data structure that helps build up a [range set](https://codemirror.net/6/docs/ref/#state.RangeSet) directly, without first allocating an array of [`Range`](https://codemirror.net/6/docs/ref/#state.Range) objects. */ class RangeSetBuilder { finishChunk(newArrays) { this.chunks.push(new Chunk(this.from, this.to, this.value, this.maxPoint)); this.chunkPos.push(this.chunkStart); this.chunkStart = -1; this.setMaxPoint = Math.max(this.setMaxPoint, this.maxPoint); this.maxPoint = -1; if (newArrays) { this.from = []; this.to = []; this.value = []; } } /** Create an empty builder. */ constructor() { this.chunks = []; this.chunkPos = []; this.chunkStart = -1; this.last = null; this.lastFrom = -1000000000 /* C.Far */; this.lastTo = -1000000000 /* C.Far */; this.from = []; this.to = []; this.value = []; this.maxPoint = -1; this.setMaxPoint = -1; this.nextLayer = null; } /** Add a range. Ranges should be added in sorted (by `from` and `value.startSide`) order. */ add(from, to, value) { if (!this.addInner(from, to, value)) (this.nextLayer || (this.nextLayer = new RangeSetBuilder)).add(from, to, value); } /** @internal */ addInner(from, to, value) { let diff = from - this.lastTo || value.startSide - this.last.endSide; if (diff <= 0 && (from - this.lastFrom || value.startSide - this.last.startSide) < 0) throw new Error("Ranges must be added sorted by `from` position and `startSide`"); if (diff < 0) return false; if (this.from.length == 250 /* C.ChunkSize */) this.finishChunk(true); if (this.chunkStart < 0) this.chunkStart = from; this.from.push(from - this.chunkStart); this.to.push(to - this.chunkStart); this.last = value; this.lastFrom = from; this.lastTo = to; this.value.push(value); if (value.point) this.maxPoint = Math.max(this.maxPoint, to - from); return true; } /** @internal */ addChunk(from, chunk) { if ((from - this.lastTo || chunk.value[0].startSide - this.last.endSide) < 0) return false; if (this.from.length) this.finishChunk(true); this.setMaxPoint = Math.max(this.setMaxPoint, chunk.maxPoint); this.chunks.push(chunk); this.chunkPos.push(from); let last = chunk.value.length - 1; this.last = chunk.value[last]; this.lastFrom = chunk.from[last] + from; this.lastTo = chunk.to[last] + from; return true; } /** Finish the range set. Returns the new set. The builder can't be used anymore after this has been called. */ finish() { return this.finishInner(RangeSet.empty); } /** @internal */ finishInner(next) { if (this.from.length) this.finishChunk(false); if (this.chunks.length == 0) return next; let result = RangeSet.create(this.chunkPos, this.chunks, this.nextLayer ? this.nextLayer.finishInner(next) : next, this.setMaxPoint); this.from = null; // Make sure further `add` calls produce errors return result; } } function findSharedChunks(a, b, textDiff) { let inA = new Map(); for (let set of a) for (let i = 0; i < set.chunk.length; i++) if (set.chunk[i].maxPoint <= 0) inA.set(set.chunk[i], set.chunkPos[i]); let shared = new Set(); for (let set of b) for (let i = 0; i < set.chunk.length; i++) { let known = inA.get(set.chunk[i]); if (known != null && (textDiff ? textDiff.mapPos(known) : known) == set.chunkPos[i] && !(textDiff === null || textDiff === void 0 ? void 0 : textDiff.touchesRange(known, known + set.chunk[i].length))) shared.add(set.chunk[i]); } return shared; } class LayerCursor { constructor(layer, skip, minPoint, rank = 0) { this.layer = layer; this.skip = skip; this.minPoint = minPoint; this.rank = rank; } get startSide() { return this.value ? this.value.startSide : 0; } get endSide() { return this.value ? this.value.endSide : 0; } goto(pos, side = -1000000000 /* C.Far */) { this.chunkIndex = this.rangeIndex = 0; this.gotoInner(pos, side, false); return this; } gotoInner(pos, side, forward) { while (this.chunkIndex < this.layer.chunk.length) { let next = this.layer.chunk[this.chunkIndex]; if (!(this.skip && this.skip.has(next) || this.layer.chunkEnd(this.chunkIndex) < pos || next.maxPoint < this.minPoint)) break; this.chunkIndex++; forward = false; } if (this.chunkIndex < this.layer.chunk.length) { let rangeIndex = this.layer.chunk[this.chunkIndex].findIndex(pos - this.layer.chunkPos[this.chunkIndex], side, true); if (!forward || this.rangeIndex < rangeIndex) this.setRangeIndex(rangeIndex); } this.next(); } forward(pos, side) { if ((this.to - pos || this.endSide - side) < 0) this.gotoInner(pos, side, true); } next() { for (; ;) { if (this.chunkIndex == this.layer.chunk.length) { this.from = this.to = 1000000000 /* C.Far */; this.value = null; break; } else { let chunkPos = this.layer.chunkPos[this.chunkIndex], chunk = this.layer.chunk[this.chunkIndex]; let from = chunkPos + chunk.from[this.rangeIndex]; this.from = from; this.to = chunkPos + chunk.to[this.rangeIndex]; this.value = chunk.value[this.rangeIndex]; this.setRangeIndex(this.rangeIndex + 1); if (this.minPoint < 0 || this.value.point && this.to - this.from >= this.minPoint) break; } } } setRangeIndex(index) { if (index == this.layer.chunk[this.chunkIndex].value.length) { this.chunkIndex++; if (this.skip) { while (this.chunkIndex < this.layer.chunk.length && this.skip.has(this.layer.chunk[this.chunkIndex])) this.chunkIndex++; } this.rangeIndex = 0; } else { this.rangeIndex = index; } } nextChunk() { this.chunkIndex++; this.rangeIndex = 0; this.next(); } compare(other) { return this.from - other.from || this.startSide - other.startSide || this.rank - other.rank || this.to - other.to || this.endSide - other.endSide; } } class HeapCursor { constructor(heap) { this.heap = heap; } static from(sets, skip = null, minPoint = -1) { let heap = []; for (let i = 0; i < sets.length; i++) { for (let cur = sets[i]; !cur.isEmpty; cur = cur.nextLayer) { if (cur.maxPoint >= minPoint) heap.push(new LayerCursor(cur, skip, minPoint, i)); } } return heap.length == 1 ? heap[0] : new HeapCursor(heap); } get startSide() { return this.value ? this.value.startSide : 0; } goto(pos, side = -1000000000 /* C.Far */) { for (let cur of this.heap) cur.goto(pos, side); for (let i = this.heap.length >> 1; i >= 0; i--) heapBubble(this.heap, i); this.next(); return this; } forward(pos, side) { for (let cur of this.heap) cur.forward(pos, side); for (let i = this.heap.length >> 1; i >= 0; i--) heapBubble(this.heap, i); if ((this.to - pos || this.value.endSide - side) < 0) this.next(); } next() { if (this.heap.length == 0) { this.from = this.to = 1000000000 /* C.Far */; this.value = null; this.rank = -1; } else { let top = this.heap[0]; this.from = top.from; this.to = top.to; this.value = top.value; this.rank = top.rank; if (top.value) top.next(); heapBubble(this.heap, 0); } } } function heapBubble(heap, index) { for (let cur = heap[index]; ;) { let childIndex = (index << 1) + 1; if (childIndex >= heap.length) break; let child = heap[childIndex]; if (childIndex + 1 < heap.length && child.compare(heap[childIndex + 1]) >= 0) { child = heap[childIndex + 1]; childIndex++; } if (cur.compare(child) < 0) break; heap[childIndex] = cur; heap[index] = child; index = childIndex; } } class SpanCursor { constructor(sets, skip, minPoint) { this.minPoint = minPoint; this.active = []; this.activeTo = []; this.activeRank = []; this.minActive = -1; // A currently active point range, if any this.point = null; this.pointFrom = 0; this.pointRank = 0; this.to = -1000000000 /* C.Far */; this.endSide = 0; // The amount of open active ranges at the start of the iterator. // Not including points. this.openStart = -1; this.cursor = HeapCursor.from(sets, skip, minPoint); } goto(pos, side = -1000000000 /* C.Far */) { this.cursor.goto(pos, side); this.active.length = this.activeTo.length = this.activeRank.length = 0; this.minActive = -1; this.to = pos; this.endSide = side; this.openStart = -1; this.next(); return this; } forward(pos, side) { while (this.minActive > -1 && (this.activeTo[this.minActive] - pos || this.active[this.minActive].endSide - side) < 0) this.removeActive(this.minActive); this.cursor.forward(pos, side); } removeActive(index) { remove(this.active, index); remove(this.activeTo, index); remove(this.activeRank, index); this.minActive = findMinIndex(this.active, this.activeTo); } addActive(trackOpen) { let i = 0, { value, to, rank } = this.cursor; // Organize active marks by rank first, then by size while (i < this.activeRank.length && (rank - this.activeRank[i] || to - this.activeTo[i]) > 0) i++; insert(this.active, i, value); insert(this.activeTo, i, to); insert(this.activeRank, i, rank); if (trackOpen) insert(trackOpen, i, this.cursor.from); this.minActive = findMinIndex(this.active, this.activeTo); } // After calling this, if `this.point` != null, the next range is a // point. Otherwise, it's a regular range, covered by `this.active`. next() { let from = this.to, wasPoint = this.point; this.point = null; let trackOpen = this.openStart < 0 ? [] : null; for (; ;) { let a = this.minActive; if (a > -1 && (this.activeTo[a] - this.cursor.from || this.active[a].endSide - this.cursor.startSide) < 0) { if (this.activeTo[a] > from) { this.to = this.activeTo[a]; this.endSide = this.active[a].endSide; break; } this.removeActive(a); if (trackOpen) remove(trackOpen, a); } else if (!this.cursor.value) { this.to = this.endSide = 1000000000 /* C.Far */; break; } else if (this.cursor.from > from) { this.to = this.cursor.from; this.endSide = this.cursor.startSide; break; } else { let nextVal = this.cursor.value; if (!nextVal.point) { // Opening a range this.addActive(trackOpen); this.cursor.next(); } else if (wasPoint && this.cursor.to == this.to && this.cursor.from < this.cursor.to) { // Ignore any non-empty points that end precisely at the end of the prev point this.cursor.next(); } else { // New point this.point = nextVal; this.pointFrom = this.cursor.from; this.pointRank = this.cursor.rank; this.to = this.cursor.to; this.endSide = nextVal.endSide; this.cursor.next(); this.forward(this.to, this.endSide); break; } } } if (trackOpen) { this.openStart = 0; for (let i = trackOpen.length - 1; i >= 0 && trackOpen[i] < from; i--) this.openStart++; } } activeForPoint(to) { if (!this.active.length) return this.active; let active = []; for (let i = this.active.length - 1; i >= 0; i--) { if (this.activeRank[i] < this.pointRank) break; if (this.activeTo[i] > to || this.activeTo[i] == to && this.active[i].endSide >= this.point.endSide) active.push(this.active[i]); } return active.reverse(); } openEnd(to) { let open = 0; for (let i = this.activeTo.length - 1; i >= 0 && this.activeTo[i] > to; i--) open++; return open; } } function compare(a, startA, b, startB, length, comparator) { a.goto(startA); b.goto(startB); let endB = startB + length; let pos = startB, dPos = startB - startA; for (; ;) { let diff = (a.to + dPos) - b.to || a.endSide - b.endSide; let end = diff < 0 ? a.to + dPos : b.to, clipEnd = Math.min(end, endB); if (a.point || b.point) { if (!(a.point && b.point && (a.point == b.point || a.point.eq(b.point)) && sameValues(a.activeForPoint(a.to), b.activeForPoint(b.to)))) comparator.comparePoint(pos, clipEnd, a.point, b.point); } else { if (clipEnd > pos && !sameValues(a.active, b.active)) comparator.compareRange(pos, clipEnd, a.active, b.active); } if (end > endB) break; pos = end; if (diff <= 0) a.next(); if (diff >= 0) b.next(); } } function sameValues(a, b) { if (a.length != b.length) return false; for (let i = 0; i < a.length; i++) if (a[i] != b[i] && !a[i].eq(b[i])) return false; return true; } function remove(array, index) { for (let i = index, e = array.length - 1; i < e; i++) array[i] = array[i + 1]; array.pop(); } function insert(array, index, value) { for (let i = array.length - 1; i >= index; i--) array[i + 1] = array[i]; array[index] = value; } function findMinIndex(value, array) { let found = -1, foundPos = 1000000000 /* C.Far */; for (let i = 0; i < array.length; i++) if ((array[i] - foundPos || value[i].endSide - value[found].endSide) < 0) { found = i; foundPos = array[i]; } return found; } /** Count the column position at the given offset into the string, taking extending characters and tab size into account. */ function countColumn(string, tabSize, to = string.length) { let n = 0; for (let i = 0; i < to;) { if (string.charCodeAt(i) == 9) { n += tabSize - (n % tabSize); i++; } else { n++; i = findClusterBreak(string, i); } } return n; } /** Find the offset that corresponds to the given column position in a string, taking extending characters and tab size into account. By default, the string length is returned when it is too short to reach the column. Pass `strict` true to make it return -1 in that situation. */ function findColumn(string, col, tabSize, strict) { for (let i = 0, n = 0; ;) { if (n >= col) return i; if (i == string.length) break; n += string.charCodeAt(i) == 9 ? tabSize - (n % tabSize) : 1; i = findClusterBreak(string, i); } return strict === true ? -1 : string.length; } const C = "\u037c"; const COUNT = typeof Symbol == "undefined" ? "__" + C : Symbol.for(C); const SET = typeof Symbol == "undefined" ? "__styleSet" + Math.floor(Math.random() * 1e8) : Symbol("styleSet"); const top = typeof globalThis != "undefined" ? globalThis : typeof window != "undefined" ? window : {}; // :: - Style modules encapsulate a set of CSS rules defined from // JavaScript. Their definitions are only available in a given DOM // root after it has been _mounted_ there with `StyleModule.mount`. // // Style modules should be created once and stored somewhere, as // opposed to re-creating them every time you need them. The amount of // CSS rules generated for a given DOM root is bounded by the amount // of style modules that were used. So to avoid leaking rules, don't // create these dynamically, but treat them as one-time allocations. class StyleModule { // :: (Object