from tensorboardX import SummaryWriter from utils.stft import TacotronSTFT from .plotting import plot_waveform_to_numpy, plot_spectrogram_to_numpy import torch class MyWriter(SummaryWriter): def __init__(self, hp, logdir): super(MyWriter, self).__init__(logdir) self.sample_rate = hp.audio.sampling_rate self.stft = TacotronSTFT(filter_length=hp.audio.filter_length, hop_length=hp.audio.hop_length, win_length=hp.audio.win_length, n_mel_channels=hp.audio.n_mel_channels, sampling_rate=hp.audio.sampling_rate, mel_fmin=hp.audio.mel_fmin, mel_fmax=hp.audio.mel_fmax) self.is_first = True def log_training(self, g_loss, d_loss, adv_loss, step): self.add_scalar('train.g_loss', g_loss, step) self.add_scalar('train.d_loss', d_loss, step) self.add_scalar('train.adv_loss', adv_loss, step) def log_validation(self, g_loss, d_loss, adv_loss, generator, discriminator, target, prediction, step): self.add_scalar('validation.g_loss', g_loss, step) self.add_scalar('validation.d_loss', d_loss, step) self.add_scalar('validation.adv_loss', adv_loss, step) self.add_audio('raw_audio_predicted', prediction, step, self.sample_rate) self.add_image('waveform_predicted', plot_waveform_to_numpy(prediction), step) wav = torch.from_numpy(prediction).unsqueeze(0) mel = self.stft.mel_spectrogram(wav) # mel [1, num_mel, T] self.add_image('melspectrogram_prediction', plot_spectrogram_to_numpy(mel.squeeze(0).data.cpu().numpy()), step, dataformats='HWC') self.log_histogram(generator, step) self.log_histogram(discriminator, step) if self.is_first: self.add_audio('raw_audio_target', target, step, self.sample_rate) self.add_image('waveform_target', plot_waveform_to_numpy(target), step) wav = torch.from_numpy(target).unsqueeze(0) mel = self.stft.mel_spectrogram(wav) # mel [1, num_mel, T] self.add_image('melspectrogram_target', plot_spectrogram_to_numpy(mel.squeeze(0).data.cpu().numpy()), step, dataformats='HWC') self.is_first = False def log_evaluation(self, generated, step, name): self.add_audio(f'evaluation/{name}', generated, step, self.sample_rate) def log_histogram(self, model, step): for tag, value in model.named_parameters(): self.add_histogram(tag.replace('.', '/'), value.cpu().detach().numpy(), step)